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A general approach to analysis continuous-time analog G, -C filters and equalizers, based
on mawix description, is presented. A general transfer function formula for any G,-C filter
structure are given. The considerations accompanying this approach lead to useful relationships
between the passive network of the filter and its transfer function. Based on these con-
siderations, a new definition of continuous-time state-space G,-C filters is given. Moreover,
connections between state matrices for voltage- and cwirent-mode state-space G, -C filters are
formulated and two canonical transformations of state-space filters into direct state-space ones,
i.e. those having grounded capacitors only, are defined. Another two classes of G,-C filters, i.e.

reducible and quasi-state-space structures are also considered.

Keywords: state-space filters, G, -C filters, matrix description, state-space representation.

1. INTRODUCTION

In recent years there has been a growing interest in continuous-time (CT) filters
using transconductance amplifiers and capacitors (G, -C). A number of attractive designs
of such filters that are fully compatible with current CMOS technology have been
reported in the literature [1]-[21]. The low-complexity excellent high-frequency perfor-
mance and easy tunability of G, -C filters make them suitable solutions for many
applications such as hard disc drives, video filters, wireless communications, computer
systems and instrumentation systems [11}, [27]-{31].

In this paper, a novel and general approach to continuous-time G,-C filters and
equalizers is developed. Special attention is focused on an interesting sub-class of G,-C
filters, so-called state-space filters. This class of filters is usually identified with filters
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that have only grounded capacitors [6], [25]. Such topologies are very attractive for
integrated circuit (IC) realizations. In this work a novel definition of state-space filters is
proposed, which comprises much wider class of G -C structures. According to this
definition, the filter structure is called a state-space one if and only if there exist the state
matrices for this structure. Of course, filter structures that have grounded capacitors
satisfy this condition, however, there are many filters containing floating capacitors that
are also state-space ones according to the new definition. Due to this, it is possible to
apply a very useful technique of state-space description to much broader class of
structures. It is important, since contemporary CMOS technologies make it possible to
implement floating capacitors without any problems. 1

The paper is organized as follows. In Section 2, a general structure of G,-C filter is ir
presented. We derive a matrix description of general G, -C filter based on a separate :
treatment of passive and active network of the circuit. It follows that the transfer function
of any G, -C filter can be easily calculated by means of the presented formulas. Section
3 is devoted to studying relationships between the transfer function of G,,-C filter and its
passive network. In this section we also describe practical criteria of estimating the order
of the filter’s transmittance that can be used in computer aided filter synthesis. In Section
4 we deal with state-space G, -C filters. A new definition of state-space G,,-C filters, based
on invertibility properties of matrix corresponding to the passive network of the filter, is
introduced. Relationships between state matrices of voltage- and current-mode G, -C
filters are derived. Moreover, we discuss two canonical transformations which enable us
to convert any state-space filter into structures containing only grounded capacitors. In
Section 5 we introduce two interesting classes of G -C structures, i.e. reducible and
quasi-state-space ones. The paper concludes with Section 6.

2. GENERAL STRUCTURE OF G ,-C FILTER

Consider a general structure of a voltage-mode G,-C filter shown in Fig. 1. The
current-mode counterpart can be obtained by inverting all transconductors and interchan-
ging input and output of the filter [23], [32]. The structure in Fig. 1 contains »n internal
nodes denoted as x, i=1,.,n, n input transconductors G,,, an output summer

consisting of transconductors ¢,G, and ~G,, as well as a feedforward transconductor side
dG,,. All transconductors form active nerwork, while input capacitors Cy;, i = 1,...,n and to ¢
capacitors C,,, 1<i<j<n form passive network. It is easily seen that any G, -C filter is desc

a particular case of the general structure in Fig. 1. Note also that n is not necessarily
equal to the order of the filter transmittance. In the following, we will investigate the
connection between the number n of internal nodes, the order of the filter and its
particular structure.

Now we would like to derive an analytical description of the considered structure.
In particular, we will calculate the transmittance H(s) of the filter and show that the
voltage-to-voltage transmittance H,(s) of the voltage-mode filter is the same as the
current-to-current transmittance H,(s) of the current-mode one. In the following con-
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and
X
u, = {c;...c,l : D+ doy 2) where it
X i, are th
) : On
where u,, u, are the input and output voltages, respectively. To simplify the notation, in
(1) we used symbols C,, (k> 1) that denote the same elements as C,. Note that the vector
on the right-hand side of (1) can be written in the form:
Gmll Gle Gmln Xy Cbl 0 0 Xy Gm/zl+scbl
G'tm Gl?zz Gli12fl . x.z s O C'bZ x2 + Gme‘.*_SCbZ “ 3)
G"”'l GMHZ Gmnn X, 0 0 C[m X, Gmbn + scbn 211:/(3/;:11
Introducing the following notation:
Gyt 2; Clj -Gy -C,
1= I
-C C,+ 2.C, - ~C
T, = 12 b2 )Z-:] 2j 20 , (4a)
where v
-C,, -C,, o Cy chi invertib
L j=t symbol
sT.—G
Gml 1 Gm 12 Gm in
Gm21 GmZZ GmZn )C] B
G=| : oo | X=p i) 6= leg) (4b)
Gmnl Gng Gmnn En
éC = [Gml)l +scb1 Gmlm +SClm]’ D= d (40) This al
(note that T is symmetrical matrix, i.e. T: =T,.), one can rewrite (1) and (2) in the
form of:
sT.X = GX+Cly, N
N 5) .
u,=C X+Du, ( signal
of the
In a similar way one can write appropriate equations for the current-mode filter. Using C, =
expres:

notation (4) we get:
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sT:X = G'X+CTi,

i, = C.X+Di ©

where the entries x, of the vector X denote, as before, the intrinsic node voltages, and i,
i, are the input and output current, respectively.
On the basis of (5) and (6) we can calculate the transmittances H, and H_ which are:

u,(s)

Hs) = =C,(sT.~G)'CT+D (7a)
u,(s)
i) A

H(s) = T(T) =C,(sT.~G")'CI+D (7b)

It is worth noticing that using (7a) and (7b), one can easily check the reciprocal behavior
of voltage- and current-mode filters:

H(s) = ‘5“% = C(sT,—G)"\CT+D = (C(sT-G)'CT+D)" =
' | ®)
= C (sTo—GT)'\CT+D = % = H(s)

where we made use of the facts that H” = H (since H is a scalar), (A" ) = (A7) for any
invertible matrix A [22], and T is symmetrical. Since H,(s) = H (s), we will use general
symbol H(s) to denote a filter transmittance. Now, let us denote adjoint matrix of
sT.~G as A where

A(s) = adj(sT¢~G) = adj(sT;—~G")" = ©
A~n1(s) A'nZ(s) Allll(s)
This allows us to rewrite H in the form:
]‘ n 5
H(s) = ————— 2, ¢/(G,, +sC,)A (s)+d 10
(S) d@t(STC“G) i,‘/z-—;lCl( mbj s bj) U(S) ( )

Note that many filter structures have only one input transconductor (i.e. no input
signal distribution), a trivial output summer (i.e. one of the internal nodes is the output
of the filter), and no input capacitors. This means that C‘Cz [0-0G,,, 00,
C,=[0-010-0]—1 at [-th position and C,, =0 for i=0,1,...n. In such case,
expression {13) reduces to the form:
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G, A u(8)

HS) = s T o)

an

Similar expression can be written for two slightly more general cases. The first one
is the case with no input capacitors, input signal distribution (ie. C,=[G,,,~ G,,. D),
and trivial output summer (C =0-010-0]-1 at [-th posmon) Then, the filter
transmittance takes the form:

1

H(s) = BTG 12 G, A5 (12)

Another case is when there are no input capacitors, no input signal distribution (i.e,
C,=[0-0 G,,, 0--0]), however, there is non-trivial output summer (e.g. in follow-
-the leader-like structures). Then, we have:

Gmbk )
H(s) = m_Zc Auls) (13)

On the basis of the above expressions one can easily calculate the transmittance of
any particular structure of G -C filter. In the next section we deal with the sensitivity of
our general G, -C structure.

We end this section with an example of a particular filter structure considered in the
‘general setting presented above. Fig. 2 shows a structure of third order elliptic G,-C
filter based on a LC ladder simulation.

Original (voltage-mode) Adjoint (current-mode)
Vin C4 Cs
o |

oo ore] I e
pEm e

;C'] :__[;CZ I iC1 :_:[-___-CZ ic:i

Fig. 2. Third order elliptic G,-C filter in voltage- and current-mode

Matrices T, G, C,, C, and D for this circuit are the following (internal nodes are
indexed from left to right):

¢,+C, 0 -C, “8m2 T 8ms 0 C. = [g,., 00l
T.=| 0 0 |, G=|g. 0 -g.l é 0o1] 14
—C4 O CS +C4 O gm6 —gm7 D= 0
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Transmittance of the filter can be calculated using (11) with k=1 and [ = 3.
Assuming for simplicity that all transconductances are equal, i.e. g, = g, fori = 1,..,7,
we obtain:

det(sT .~ G) =
= Cy(C,C+C,C+ CC5* + Cy(C + Cy+2C g, s +(C,+ C, + Cgls +2g%  (15)

Ay (9) = C,C 57+ g2, (16)

Let C2 = C,C4+C,C,+C,C,. Then, filter transmittance H(s) has the form:

2
Em
52420
H(s) = (C4§”‘ ) : GG ; 3 (17)
C«\‘ S3+ (Cl +C3 + 2C4)gm S‘2+ (CI+C2+C3)gm S+ 2gm
2 > 2 2
c: C: C,C;

The above example shows that the presented general approach provides as with
a very elegant and easy way to calculate transfer function of any G, -C filter structure.

3. PASSIVE NETWORK OF GENERAL G -C FILTER

In this section we investigate how the passive network of general of G -C filter
influences its properties, especially the order of filter transfer function H(s). First, we
would like to introduce necessary notation and give some general remarks.

Recall that matrix T representing the passive network of the filter is symmetrical.
By construction of T, for any i = 1,...,n we have (see (4a)):

‘(Tc>ij12k=l§:ki_‘(TC)ik’ and 1(Tc)ii12kh %¢.|(Tc)ki| (18)

i.e. matrix T'- is diagonally dominant. From linear algebra (Gershgorin’s theorem), T'. is
then positively semidefinite (that is x”7T .x >0 for any nonzero nx 1 vector x). Moreover,
T, is invertible (det(T) # 0) if and only if T, is positively definite (i.e. x"T.x>0 for
any nonzero n X1 vector x). Since T, is symmetrical, there exists an orthogonal matrix
T (ie. TT" = T"T = I, which implies 7' = T7) such that T"'T,T is diagonal (with
non-negative elements, since T'. is positively semidefinite).

It is useful to introduce graphs representing passive network of the G, -C filter. Let
G(V,E,) be a graph in which V, is the set of nodes V, = {v,, v,,....v,} and E, is a set of
edges. Node v, represents both the common node x, and input node x,, of the filter,
while v, ., v, represent internal nodes x,,..., x, of the filter. Edge e, € E, if and only if x,
and x; are connected by the floating capacitor C,;(j>i>0) or x, and x, are connected by
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the grounded capacitor C,,(i>0). Edge ¢,
input capacitor C,, j = 1,“.,
which Vf: Vi
if and only j>i>0. Fig. 3 gives an example of the

ek if an

Hl

graphs G, and G,. It is seen from Fig. 3 that our example graph G, has three disjoint

components, while G, has four disjoint components.

Passive network

Xﬁ‘_.| X1 }_.2 X3 X6 X7
Cb1 | C12 Css C45 J_
C11 Cr7

L

Fig. 3. Example of filter’s passive network and related graphs G, and G,

Having defined graphs G, and G,, we can consider the structure of the matrix T'¢. It
is seen from (4a) and the definition of graphs that T'. consists of square submatrices
(blocks) situated along its diagonal (up to the renumbering of node indexes). The

number of blocks is equal to the number of disjoint

the number of disjoint components of graph G, having cardinality one and different from
vy The latter represent just those internal nodes of the filter which are not connected to
any other node by capacitance elements (we will call them floating nodes). The structure

of matrix T, for the passive network shown in Fig.

[~

X
X
0
0

I S R B o SN R
S O X X X O o
el N ==
S O X O O O
o o 0o c o o o

It is evident that T'. cannot be invertible if filter has floating nodes. It is important
for further applications to formulate necessary and sufficient conditions for invertibility
In the subsequent considerations we will identify the block of matrix T
with the corresponding sets of capacitors. We have the following proposition:

of matrix T.

n. We define also graph G (
v,} represents internal nodes of the filter and E,C E, such that e, € E,

d only if x;, and x; are connected l?y Proposi
V,, E,) as the subgraph of G, in correspe
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that TC.
(4a) (wi
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proposition 1. Let T be the block of matrix T. Then, T is invertible if and only if the
corresponding set of capacitors contains at least one grounded capacitor or input
capacitor.

Proof. Matrix T is symmetrical and diagonally dominant since it inherits these
pmpemes from T,.. Thus, T is invertible if and only if it is positively definite. Assume
that T is kx k matrix. The general form of T is then analogous to those of T. glven by
(4a) (with possible renumbering of node mdexes if necessary). Lety = (y,,...,y,)" be any
nonzero vector, Then, we have (recall that Cﬁ = CU.):

Cp+Cpy+ 2.C, -C,, —c,
j# . A
g . -C C.,+C + 2,C,. - -C y
y’Tcy =y ‘ 21 b2 2? /xzz 2% . . 2k . .2 _
- Ckl - Ck2 Cbk + Ckk + % ij Ve
" J N

(G +C )+ ;CU(% -y)
J

k k k k
= yT y2<cb2 * sz) +j% Czj(yz Myj) = Zly?(cb,. + Ci:‘) + Z} ;4 Cijyi(yi "yj> =
s i= i=1j

"k
YlCp+ C) + ;{ Ck;(yk_Yj)
L J

zylz(cbl + Cu) + Z

i=1

ZC,Jy(y, y,)+ZC,,y(y, y,))=

i>i

II

Zy,(C,,1+C,,)+ Z(ZC,,y(y, y,)+2C,,y(y y))

i=1\j>

It

k
,;y,(Cl,,+C,,)+ Z ZC,,(y, y,)?

i=1j>i

It is evident from (20) that yTTCy = 0 if and only if y, =y, for a~ny i,j=1,..,k and
Cy+C, =0 for i=1,..,k This proves our proposition since if T'. has at least one
glounded or input capautox then it is positively definite (so it is mveruble) Otherwise,
there exists y for which y”T.y = 0 so T is not invertible.

Corollary 1. Let T be the block of matrix T.. Then, T is invertible if and only if the
sum of its elements if positive. r

Proof. 1t is apparent from (20) that the sum of elements of T equals 2.(Cy+C,) and is
i=1

positive if and only if T - contains at least one grounded or input capacitor. Our assertion
follows now from Proposition 1.
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Corollary 2. Let T be the block of matrix T.. Suppose that the size of T is kxk. Then, Let u
rank(TC) = kif and only if at least one of the capacitors corresponding to T is grounded the order «
or input one. Otherwise, rank(T ) = k— 1. by (DL
Proof. If at least one of the capacitors corresponding to T. is grounded or _input one, Then, we

then it is invertible by Proposition 1, hence rank(Tc) = k. Suppose now that T contains
only floating capacitors C, ;J>i>0). Then the sum of elements of Tc is zero by
definition (see (20)). Consrder any submatrix (T ), of T defined by removing i-th row
and i-th column of T L i=1,.., k We assert that (Tc) is invertible. Obvrously, (TC) is
symmetrical and dldgonally dommant Thus, it is enough to show that (T ), is positively
definite. Without loss of generality we can assume that i = k. Proceeding similarly as in
the proof of Proposition 1 we obtain for any nonzero vector y = (y,,..., ;)"

This mear

k-1 k-1 : 1

YTy = Zy?C,k+;J§C,,(y, ¥)? 21 gf;;i;;;;

the rank ¢

This sum is positive since C,, >0 for at least one i = 1,...,k—1 by connectivity of the Proof. Trz
component of graph G, correspondmg to T We have proved that the k—1xk~] the prece
submatrix (Tc)k of T is 1nvert1ble SO rank(TC) = k-1. k any invert
Corollary 3. Let T, be nxn matrix. Then, rank(T.) = n+1—k, where k is the number of T'T.T |

disjoint components of the corresponding graph G,. number o

that det(s’

Proof. 1t is apparent that rank(T ) = Xrank((Tc)i), where (Tc)i is i-th block of T and ict inec
i=1 SIric

N is the total number of blocks. Denote the number of floating nodes of the filter as n; Using
and number of blocks connected to the common node or to the input node (by at least G, corres;
one capacitor) as N.. It is seen from the definition of graphs G, and G, that the number applicatic

of disjoint components of graph G, equals k = N—N_+1+n,. Indeed, components of G, Propositi
are the following: blocks not connected to the common node (N-N ), one component n+1-k,
consisting of all blocks connected to the common node and n, floating nodes. Now, digjoint ¢
rank(To) = n—n,—(N—N,) since each floating node produces zero row and zero Proof. Tt
column in matux T and, by Corollary 2, each block of T not connected to the com- Note
mon node 1educes rank(T.) by one. Thus rank(T ) =n-n—~(N- N)=n+l1- (e.g. [33]
~(N-N_+1 +n)=n+l-k which concludes the proof. for practi

It is easy to observe that matrix T, is invertible if and only if the filter has no floating _ The
nodes and all blocks of T are mvertrble. Now, we formulate it in terms of graph G, ce. For e
Proposition 2. Matrix TC is invertible if and only if the corresponding graph G; is ilters, w
connected. view of ¢
Proof. Suppose that T is invertible. From the preceding paragraph there are no floating 4 priori tl

nodes and each block of T contains a grounded capacitor or input capacitor. This means  without ¢
that each component of graph G, is connected as a subgraph of G, to node v, by at least ‘
one edge. Thus, G, is connected Suppose now that G, is connected This implies in
particular that the hlter has no floating nodes. Moreover if there exists a block without
a grounded (or input) capacitor then G, cannot be connected, which leads to contradic:
tion. Thus, all blocks are invertible and so is T'.
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Let us now turn to relationships between the passive network of the G, -C filter and
the order of the filter transmittance which we will denote as ny. Recall that H(s) is given
by (11). Let T be any invertible nxn matrix (so TT™' = T™'T = I — identity matrix).
Then, we have:

H(s) = C,(sT.~G)'CT+D = C,TT"\(sT-G)"'TT"'C7T+D =

- ~ 22
=CTT'T,T-T'GT)'T'C'+D 22

This means that H(s) is invariant under the transformation:
C,»CT, CI'>T'C,L, T,—»T'T.T, G-T'GT (23)

Using this fact we can prove the proposition which is the main goal of the section:
Proposition 3. Order ny, of the transmittance of a general G, -C filter is not larger than
the rank of matrix T .
Proof. Transmittance of the filter is given by H(s) = C",(STC—G)""C‘C”—D. It follows from
the preceding paragraph that H(s) is invariant under the transformation given by (23) for
any invertible matrix T. However, matrix T'. is symmetrical, hence there exists such 7' that
T'T T is diagonal. Since rank(T,) is invariant under similarity transformation, the
number of nonzero (diagonal) elements of T7'T.T is exactly equal to rank(T o). It follows
that det(sT—G) is a polynomial in s of order rank(T ). This means that n, <rank(T_) (a
strict inequality may occur when H(s) has common poles and zeros).

Using Corollary 3 we can reformulate assertion of Proposition 3 in terms of graph
G, corresponding to matrix T'.. Such a formulation may be more convenient for practical
applications.
Proposition 4. Order ny of the transmittance of a general G, -C filter is not larger than
n+1—k, where n is the number of internal nodes of the filter and k is the number of
disjoint components of graph G, corresponding to matrix 7.
Proof. The proof is straightforward and emerges from Proposition 3 and Corollary 3.

Note that the estimate similar to that given in Proposition 4 is known in literature
(e.g. [33]), however here it is formulated in terms of matrix T ¢ hence more convenient
for practical applications.

The results formulated in this section have both theoretical and practical significan-
ce. For example, Proposition 2 can be used to define some important class of G, -C
filters, which is done in the next section. Proposition 4 can be useful from the point of
view of computer aided synthesis of G,-C filters. This is because it allows us to estimate
apriori the possible order of transmittance of a filter generated by any design algorithm
without calculating this transmittance (which is usually a time consuming task) so it can
be a convenient criterion while choosing of a particular filter structure within some
design strategies.

We end this section with the following remark. It has been mentioned in the
discussion preceding Proposition 3 that the transformation given by (23) does not
influence transmittance of the filter for any invertible matrix T. It is worth noticing that
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such a transformation may determine a new realization of H(s). Suppuse, in particular,
that T is similarity matrix for which T7'T.T is diagonal, and that there are no input
capacitors in the filter (i.e. C,, =0 for i = 1,...,n). Then, transformed matrices (j’vT X
T'C7, T'T.T, T"'GT determine a new structure that realizes the same transmittance
(of course, the considered transformation is nontrivial if T is not diagonal). This new
structure has only grounded capacitors with values equal to the values of nonzero
diagonal elements of T7'T.T.

4. STATE-SPACE G,-C FILTERS

In this section we consider a certain class of filters which we call state-space G, -C
filters. Recall that a general description of linear filtering circuits can be obtained using
the state-space representation. The appropriate state equations can be written as follows
(71, {25]:

sX(s) = AS(s)+BU(s) 24

Y(s) = CX(5)+DU(s)

where X, U, Y are, respectively: state vector consisting of output signals of n internal
integrators (thus, Xe M, ,, where M, denotes the set of nXm matrices), input signal
and output signal; Ae M, BeM, . CeM,  DeM,,.

Using (50), the overall transfer function of the filter can be expressed in the form:

H(s) = % =C(sI-A)'B+D (25)

where Te M stands for the identity matrix. It is useful to introduce internal transfer

nxXm

functions f, and g, i.e. the transfer function from the input of the filter to the output of
integrator { (i.e. to x;) and the transfer function from the input of integrator i to the
output of the filter, respectively-[7]. Using the following notation:

F=(f, f2...f")T, G = (8 gz"'gn) (26)

one can define the so-called observability and controllability Gramian matrices W and K [7]:
W=—1—~7G*de, K=~—1——TFF*dw @27
27 7, 2m -,

One can also prove that the matrices W and K satisfy the following equations:

ATW+WA = -C7C,
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varticular, AK+KAT = —-BBT (28b)
- no il}put
ices C\T, Now, we turn to the general description of a G _-C filter presented in Section 2.
smittance Assume that matrix T, corresponding to the passive network of the filter, is invertible,
This new and that there are no input capacitors in the filter (ie. C,;,=0 for i =1,..,n and
f nonzero C. =[G, G,p,)). Then, we can rewrite (5) and (6) in the following form:
sX = T GX + T Clu,
. (29)
u, = C X+Du,
sX = T:'G'™X+T{Cli,
ace G, -C . ~ . 30
ned using i, = C.X+Di

as follows . X
We compare (29) and (30) to (24). It is apparent that all those equations are the

same provided that A = T¢'G, B=TZCT, C=C, in (29), A =TJG", B =TI,
C= C‘C in (30), and that intrinsic node voltages are chosen as state variables. Note that
absence of input capacitors is crucial, since otherwise we would have a complex variable
s in the right-hand sides of (29) and (30); in such a case (29) and (30) could not be
compared to (24). Due to this fact we can introduce the following definition:

Definition 1. Any G, -C filter without input capacitors and such that corresponding
matrix T, is invertible is called a state-space G,-C filter. The state variables of such
a filter, relating to equations (29)—(30), are just internal node voltages.

Thus, invertibility of matrix T and absence of input capacitors are the necessary
and sufficient conditions for the existence of the state matrices. From the discussion
preceding Definition 1 we obtain that the state matrices of voltage-mode filter denoted
asA, B, C, D, and the state matrices of current-mode filter denoted as A, B, C,, D,
are the following:

24)

n internal
put signal

the form:

25

al transfet
- output of
r { to the

A =T)G B =TJC' C,=C, D,=D (31)

A, =T{G" B,=TJC' C,=C, D,=D (32)

Note that if the G,,-C filter has only grounded capacitors and no floating nodes, then
the corresponding matrix T is diagonal and, of course, invertible. In literature (e.g. [7],
[26]), only such filters are usually considered as state-space ones. We will refer to them
as direct state-space filters. Our definition comprises a much wider class of filters.
Using Proposition 2 (Section 4) one can easily reformulate Definition 1 to the form: any
G,-C filter for which graph G, corresponding to matrix T is connected, is called
4 state-space filter.

Using (31) and (32) we can obtain the following relationships between the state
matrices for voltage- and current-mode filter:

(26)

andK[Th |

an |

A, =TJA'T., B,=TJC' C,=B'T. D,=D (33)

< ¥
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Having (33) we can also derive analogous relations for the observability and control-

lability matrices W and K. Rewriting (28a) for the voltage-mode filter and using (33) we
obtain:

ATW +W A, =-CIC, (34)

which yields:
(TATHW, +W(TIAIT,) =-T B BT, (35)
ATIWITH+TIW,THA] =-B BT (36)

However, rewriting (28b) for the current-mode filter we have:
A K +KAl=-B B! 37
Thus, we get the following equality:
K, =Tdw T (38)
A similar reasoning that starts from (54b), yields the following for voltage-mode filter:
W, =TK,T, (39

Relations (33), (38) and (39) are important in applications. For example, in [32] the
authors considered dynamic range (DR) of voltage- and current-mode state-space G, -C
filters. It turned out that the general DR formulas for a current-mode filter can be (due to
relations (33), (38) and (39)) easily expressed in terms of a voltage-mode filter, which
significantly facilitates further comparison of both modes of the filter.

1t is well known (e.g. [2]) that structures containing only grounded capacitors and
no floating nodes (i.e. direct state-space filters in our terminology) are most suitable for
monolithic implementation. The reason is that parasitic capacitances can be absorbed
into the circuit capacitances in these structures and that grounded capacitors need
smaller chip areas than floating ones. General description of G,,-C filters introduced in
Section 2 gives an easy way to transform any state-space filter (i.e. containing, in
general, also floating capacitors) into direct state-space structure. Below, we describe
two “canonical’ transformations from a state-space structure into a direct one.

Let T, be any diagonal matrix with positive elements, i.e. (T iy = c, ¢
i = 1,...,n. Multiplying the first equation in (29) by f’c, one gets:

>0,

i

sT X =T TGX+T TECu,
¢ clc ctc 40)
u, = C,X+Du,

e S R R
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nd control- ntroducing the following notation:

ing (33) we o . N N . - N
G=T.T'G, C = ' TT., C,=C,, D=D “4n
(34) we can rewrite (40) in the form
sTX = GX+Cy,
(42)
u, = C X+Du,
(35)
which is the same as the equations (5) describing the general structure of a voltage-mode
(36) G,-C filter. This means that matrices T, G, C,, C, and D determine the new filter
structure. Due to the assumptions concerning matrix T, this structure is a direct
state-space one and has the same transfer function as the original filter. Indeed:
37 H(s) = C(sTo~G) ' CI+D = C (T~ T TEG) T T CT+D = .
= C (I T T~ T TEG) 'CT+D = € (sT o~ G 'CT+D = H(s)
(38) Note that invertibility of matrix ’f’c is crucial in proving above equality. All elements of

anew filter structure are given by the appropriate matrix elements, namely: C L= (ZIA’C)i -
G,y = (GA)U, G = (’CA‘c) and ¢, = ((:",), It is seen that changing elements é; of matrix TA’C
means changing the values of filter elements without changing its structure. This is very
convenient since it makes possible to optimize the filter, e.g. with respect to the
sensitivity or the dynamic range.

Now we describe another transformation of a state-space G, -C filter to direct
state-space one. Selecting any diagonal matrix T, with positive elements (TV‘C)” =C,

C;>0,i=1,..,n, we can repeat, for the current-mode filter, the procedure presented
in the preceding paragraph. Then, matrices G, C,, C, and D, defined as:

node filter:
(39

, in {32] the
space G, -C
n be (due to
lter, which

vacitors and C,=CTJT., D=D (44)

suitable for
be absorbed
\citors need
itroduced in
ntaining, in
we describé
€. “~
-, >0,

as well as matrix 7., determine another structure of the G,,-C filter which is, of course,
adirect state-space one. Filter elements are defined similarly as in the previous case.

In order to see better the difference between filter structures generated by the two
described above transformation procedures, consider the case when the original filter
has only one input transconductor (no input signal distribution) and a trivial output
summer, ie. C, = [0 0G,,, 0-0] and C,=[0+-01 0-0]-1 at l-th position. Com-
pAarinAg (41) and (44) one can see that the filter structure determined by matrices f’c, G,
C. C, and D has (in general) input signal distribution and a trivial output summer,
however, the structure generated by matrices f’c, é, CV‘C, CV“, and D has no input signal
distribution and (in general) a non-trivial output summer. This is very convenient, since
it gives us an additional degree of freedom while designing the filter for particular
application.

(40)
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It is worth noticing that the described above transformation procedures can be easily
generalized. Suppose that 7' is any invertible matrix, which is symmetrical, diagonally
dominant, with positive diagonal and negative non-diagonal elements. Then, the trans-
formation generated by f‘c determines a new filter structure, since any nxn matrix
satisfying the above conditions represents the passive network of some state-space filter
(see Section 3). Indeed, any non-diagonal element (Tc),,, Jj>1I, can be interpreted as

a floating capacitor and the element (T(:);/’“ 2 (I"C)u, i=1,.,n as a grounded
EVESN

capacitor. Other filter elements are given as usual: G, = (GA)U, T b, = (Cc) and
¢, =(C),. The same is true for the transformation generated by matrix 7. Thus, we
have proved the following result;

Proposition 5. Any state-space Gm-C filter can be transformed (without changing its
transfer function) to the structure that has any passive network, provided that the
corresponding matrix 7' is invertible. For each such passive network there exist two
canonical transformations that yields different state-space filter structures.

The above result creates new possibilities of filter optimization. For instance, given
any structure realizing the desired transfer function, by changing the passive network of
the filter we can look for another structure with as small number of transconductors as
possible. It is also possible to look for design trade-offs concerning complexity of
passive and active network.

=
s "B

i& :_1::62 :_g—& ii& :_:Ef) ;6
(a) (b)

Fig. 4. Third order elliptic filter of Fig. 2 transformed to direct state-space structure by the transformation
generated by matrix T (a) and T (b)

Now we would like to give an example of the state-space filter transformation into
the direct state-space structure. Consider the third order elliptic filter shown in Fig. 2
(Section 2). Fig. 4a shows the (vol tage- mode) filter structure obtained by means of
transformation generated by matrix T Filter elements are the following: C, = (TC)W
Boij = (G) and g,,.; = (T) with matrices G and C calculated according to (41) where
matrices 1<, G and C, of the original filter are given by (14). Fig. 4b shows the
(voltage-mode) filter structure obtained using the transformation generated by matrix 7
Filter elements are the following: C, = (76)”, 8uij = (G)”, o = (C) and ¢, = =C DE wnh

e
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matrices G, C'C, (j’\‘, calculated according to (44). In particular, matrices Tc and TC can be
identical, which means that both resulting direct state-space structures have the same
passive network.

Note that the structure in Fig. 4a has two input transconductors and no output summer
(output signal is taken directly from one of the internal nodes), while structure in Fig. 4b has
one input transconductor and nontrivial output summer consisting of two transconductors.

5. REDUCIBLE AND QUASI-STATE-SPACE STRUCTURES

In this section we focus our attention on certain interesting classes of G, -C
structures which we call reducible structures and quasi-state-space structures. Suppose
that we have G -C filter with n internal nodes x,, x,,...,x, and corresponding matrices
T., G, C”C, CN’,, and D defined by (4a)-(4c). Moreover, let the filter has a floating node,
say x, (recall that floating node is the node not connected to any other node by
capacitance elements). It follows that if this k-th node has inner loop (i.e. G,,, # 0) then
node x, can be removed, i.e. the filter structure can be reduced to the structure with n-1
internal nodes. The reduction does not influence the transmittance of the filter. Below,
we give the detailed description of the reduction procedure.

Criginal branch Reduced branch

) Gmjj _
xil L—xk L—" | — Ix — X » X
Gmij PR
—
— (a)
in Gmbk Gmkk [@l ~
. Gmbi
A T o x
Gmbi S
(b)
CGm  -Gm

out

Fig. 5. Filter structure reduction: connection between input node and i-th internal node (a), j-th and i-th internal
nodes (b), i-th internal node and output of the filter (c)



516 S. KOZIEL, S. SZCZEPANSKI Kwart. Elektr. [ Telekom.

Fig. 5a shows the fragment of the active network of the filter concerning connections
between input node and i-th internal node (i # k). It is seen that the current at i-th node
due to the voltage u, at the input of G, and G, is u, <Gmf)k_Gmkami&/ G, - Thus, the
two branches shown in Fig. 5a can be replaced by one transconductor G, such that:

. GG
Gmbi = Gmbi“ ”gk ik (45)
mkk

Similar reasoning concerning connections between j-th and i-th internal nodes
{J # i # k) and between i-th internal node and output of the filter (i # k) results in the
reduction of appropriate branches shown in Figs. 5b and 5¢. The new transconductance

value G, and new coefficient ¢, are the following:
N G .G .
— mkj " mik
Gmr’_/’ - Grnij___ G (46)
mkk
. ¢, G, .
& = ¢;——s—nk (47
‘ Gmkk

Described procedure enables us to eliminate k-th internal node from the filter
structure. This results in a new structure with n-1 internal nodes and corresponding
matrices T, G, C,, C, and D. Appropriate matrix elements are given below:

(To, i.j<k G, ij<k
(To),y i<k jzk . )G, i<kijzk
To),= (To), .\, izk j<k G), = G, izk j<k (48a)
(Tc)iwl.j“l i>.72k ém,v-,.f-l i’jZk
N G, +sC, i<k . & i<k .
¢ = Amb, b, C)H = { D= d 48b
(€, G,y +5Cy,_, izk €., &, ik (480)

It is seen that due to removing k-th node, some shift of indexes is necessary.
Obviously, if the original filter structure has more than one floating node with inner
loop, then all such nodes can be removed by iteration of described procedure.

On the basis of the above considerations we can formulate the formal definitions:
Definition 2. The G _-C filter structure is called reducible if it has at least one floating
node x, with inner loop (i.e. G, ,, # 0).

Definition 3. The G_-C filter structure is called completely reducible if each of its
floating nodes has inner loop.

Reduction procedure can be helpful in computer aided synthesis of G _-C filters
since it allows to remove some redundancy in filter structure. Note, however that
reduction is not always desirable — more complex structures are often used for their
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flexibility (there exist universal structures making possible independent control of filter
poles and zeros, e.g. [2]). Note also that some design techniques, e.g. Bruton Transfor-
mation [2], lead to the structures which are not reducible.

Now, we would like to introduce another class of G, -C structures.

Definition 4. The G -C filter structure is called quasi-state-space structure if it has no
input capacitors (i.e. Cy; = 0,7 =1,....n) and matrix T, corresponding to filter’s passive
network is not invertible but each block of T. is invertible.

Although for quasi-state-space filters do not exists state matrices, it follows that
such structures exhibits similar properties as state-space structures. In particular, any
quasi-state-space filter can be transformed to the direct structure (i.e. having only
grounded capacitors). To show this, suppose that nxn matrix T has the following
structure:

(T, 0

(Te),
0 (49)

. 0 0

where (T), i = 1,...,k are invertible blocks of sizes n;xn, and the rest of elements are
weros. Let n” = n,+n,+... +n,. Note, that matrix T of any quasi-state-space filter has
this structure up to renumbering of indexes. Let T% be the matrix defined as below:

(T, 0

(o),
I (50)

0 1

Then, T'Z is invertible and (%)™ To.=T.- (T2 =1%, where I* is diagonal
matrix such that I} =1 for 1<i<n” and I% =0 for n*<i<n. Now, multiplying
tuation (5) from the left by (T7)™" we obtain an analog of equation (29) for
(uasi-state-space filters: ‘
sSI"X = (TE'GX+(T1"'CTu,
(51)
u, = C,X+Du,
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_ Let 7% be any diagonal matrix such that, i.e. (T%), = C,, C,>0, for 1<i<n* and
(T?), = 1 for n” <i<n. Multiplying first equation in (51) by T% one gets:

In t
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G,-C fil
automate
within s

sTEAX = T4(TEy GX+T”‘(T ) ICT
) (52)
u, = C,X+Du,

~

where 777 = 1‘”1# is diagonal matrix such that (T'%%), = C, C,>0, for 1<i<n” and

TW) =0 for n” <i<n. It is seen, when comparing (52) to (5), t hdt T%7 and matrices
G, C// C7 and D7 defined as:

G* =T T?y'G, Cr=C.(TH)'Tt, C¢7=C, D*=D (53)

determine new structure which is a direct (quasi-state-space) one. Of course, elements CA,‘i
are new grounded capacitances of the filter. Note that conclusions comprised in the
discussion following (42) remain valid in this case. In particular, transmiftance of the
original and transformed filters are the same, since 77 is invertible matrix.

Similarly as in Section 5, we can define second transformation starting from
description of the current-mode filter. If f'# is any diagonal matrix such that, i.e.

(Tt = C, C,>0, for 1 <i<n” and (T%), = 1 for n” <i<n, then a new filter structure is It se
determined by the following matrices: only fro
T## T#I;‘f G# G ot # o # # # ) #E matter .O
(TreHy°*re, ¢*=C, C? C(T)T,D—D (54) drawn 11

The above transformations can be generalized similarly as in the state-space filters

case, i.e. diagonal matrix T7% can be replaced by any matrix T7% such that its n”xn”

submatrix is symmetrical, diagonally dominant, having positive diagonal and negative
non-diagonal elements and (T c)y =1 fori, j>n”. By the argument similar to that given RS
in paragraph preceding Ploposltlon 5, transformation generated by T7% determine new Swite
filter structure with passive network corresponding to matrix T4 = F#I# and the rest - T. D
of elements given by G, = (G, G, = (C?), and ¢, = (C}). We have also the result ' i)l}d“
analogous to Proposition 5: R L
Proposition 6. Any quasi-state-space G, -C filter can be transformed (without changing ampl.
its transfer function) to the structure having any passive network provided that . Sdn
corresponding matrix T has the structure such as described in the preceding paragraph. Two
For each such passive network there exist two canonical transformations that give '[\L/[ln :2
different quasi-state-space filter structures. GG
We end this section with the remark that every quasi-state-space G_-C filter that is lands
completely reducible can be reduced to the state-space structure. Indeed, let the filter has G.G
k floating nodes, i.e. graph G, corresponding to its passive network has &+ 1 connected ) IEEE
components. Removing' all floating nodes causes that graph G, representing pag‘si\{e 1()) ' ?SI\
network of the reduced filter becomes connected, hence corresponding matrix T i 'ﬁhm.

invertible. This means that the reduced filter 1s a state-space one.
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6. CONCLUSION

In the paper, a novel and general approach to G_-C filters based on matrix
description has been presented. There have been shown general transfer function
formulas for any G_-C filter structure. We have investigated relationships between the
passive network of the filter and its transfer function as well as conditions of invertibility
of matrix corresponding to the filter’s passive network. Based on these considerations
we have given a new definition of state-space G,-C filters and investigated their
properties. In particular, we formulated relations between state matrices for voltage- and
current-mode  state-space G_-C filters and defined two canonical transformations of
state-space filters into direct state-space ones, i.e. those having only grounded capaci-
tors. It has been shown that any state-space filter can be realized with any passive
network (provided that the corresponding matrix is invertible). All the results presented
in the paper can be used in computer aided filter synthesis and optimization. The reason
is that matrix description can be easily handled by computer. Moreover, based on matrix
description of G, -C filter one can derive general formulas for sensitivity function of any
G,-C filter structure. The reduction procedures discussed in Section 5 can be used in
automated filter design to simplify filter structures generated by computer programs
within some design strategies.

It seems that the presented consistent approach to G _-C filters can be interesting not
only from a theoretical point of view but also it may be useful for filter designers. The
matter of future work is to construct tools for automatic filter design based on the results
drawn in this paper, with special care to the sensitivity optimization.
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S. KOZIBL, S, SZCZEPANSKI

ANALIZA OGOLNYCH STRUKTUR FILTROW G, -C
ZMIENNYCH STANU CZASU CIAGLEGO

Streszczenie

W pracy przedstawiono nowe podejécie do waznej i szeroko stosowanej klasy filiréw aktywnych czasu
ciaglego, wykorzystujacych wzmacniacze transkonduktancyjne i pojemnoéci (tzw. filtry G -C). Zaproponowa-
no ogdlny opis macierzowy filtréw G, -C, ktdry obejmuje wszystkie mozliwe realizacje filwéw w rozwazanej
klasie elementéw. Zaletg tego opisu jest miedzy innymi to, ze wszystkie macierze wystepujace w réwnaniach
moga by¢ tworzone bezpoSrednio przez wglad w schemat ukladu. Podano ogélne wzory okre§lajace
ransmitancje filtru, a takze wykazano wzajemna odwracalno$é strukwr napieciowych i pradowych. Jakkol-
wiek jest to cecha powszechnie znana, w ramach przedstawianego podejScia otzymuje sie ja jako prosty
i bezposredni wniosek z ogdlnych réwnait opisujacych filtr. W dalszej kolejnosei, przedstawiono zaleznoSci
pormigdzy struktura pasywny (. pojemno$ciowa) filtu a rzedem transmitancji filtru. Sformutowano szereg
wierdze ustalajacych warunki konieczne i dostateczne odwracalnosci macierzy odpowiadajacej sieci pasyw-
nej filtru, a takze goérne ograniczenia rzedu transmitancji fitrn w zaleznoSci od spéjnosei grafu opisujacego
sie¢ pasywna.

W drugiej czedcei pracy wprowadzono nowaq definicje filtrow zmiennych stanu, zgodnie z ktora filtrem
amiennych stanu jest taki filtr, dla ktérego macierz odpowiadajaca sieci pasywnej jest odwracalna, co jest
réwnowazne istnieniu macierzy zmiennych stanu dla takiej struktury. Jest to istotne uogdlnienie istniejacych
definicji, poniewaz dotychczas, za filtry zmiennych stanu uwazano te, ktére posiadaja wylacznie uziemione
pojemnosci. Zgodnie z nowg definicja do podklasy filtréw zmiennych stanu nalezy réwniez szereg struktur
zawierajacych pojemnodci nieuziemione. Pozwala to na uzycie aparatu opisu zmiennych stanu w odniesieniu
do szerszej klasy filtrdw. Zaproponowano réwniez dwa kanoniczne przeksztalcenia umozliwiajace transforma-
¢cje dowolnego filtru zmiennych stanu do struktury zawierajgcej wylqeznie pojemnosci uziemione, co moze
mieé znaczenie w przypadku realizacji monolitycznych. Wykazano réwniez, ze kazdy filtr zmiennych stanu
moze by¢ przetransformowany do struktury zawierajacej dowolna sie¢ pasywna (o ile tylko odpowiadajaca
macierz jest odwracalna).

W pracy wprowadzono réwniez kolejne dwie klasy filwéw, tzw. filtry redukowalne oraz filoy pseudo
-— zmiennych stanu. Pierwsza z nich obejmuje struktury zawierajace wezly wewnetrzne nie dofaczone do
zadnej pojemno$ci w ukfadzie ale zawierajace wewnetrzng petle transkonduktancyjna. Struktury tego typu
mozna zredukowad poprzez usunigcie takich weztéw bez zmiany charakterystyk filtru, modyfikujac jednoczes-
nie wartosci elementéw ukiadu. Druga klasa filwéw, to struktury o nieodwracalnej macierzy poduktadu
pasywnego, ktéra ma tg wihasnodé, ze jej dowolna kwadratowa podmacierz o niezerowych elementach
diagonalnych jest odwracalna. Pokazano, ze struktury takie maja w pewnej mierze wlasnosci analogiczne do
lilréw zmiennych stanu. Nalezy takze zauwazyé, ze podklasa struktur pseudo — zmiennych stanu zawiera
nietrywialne przyktady filaéw, np. realizacje uktadowe powstajace przy uzyciu transformacji Brutona.

Wyniki zawarte w omawianej pracy moga byé one zastosowane do automatycznego projektowania
Panalizy filuéw G, -C. W szezeg6lnosei, nalezy zauwazyé, ze opis macierzowy moze by¢ tatwo implemen-
lowany w postaci programu komputerowego, podobnie jak wszelkie transformacje i przeksztatcenia realizowa-
e 7 jego pomoca.

Slowa kluczowe: filtry zmiennych stanu, filiry G, -C, opis macierzowy, reprezentacja zmiennych stanu




