PHYSICAL REVIEW A, VOLUME 65, 062101
Dynamical description of quantum computing: Generic nonlocality of quantum noise
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We develop a dynamical non-Markovian description of quantum computing in the weak-coupling limit, in
the lowest-order approximation. We show that the long-range memory of the quantum regambias the
1/t* one exhibited by electromagnetic vacuuproduces a strong interrelation between the structure of noise
and the quantum algorithm, implying nonlocal attacks of noise. This shows that the implicit assumption of
quantum error correction theory—independence of noise and self-dynamics—fails in long time regimes. We
also use our approach to prespotedecoherence and decoherence accompanied by dissipation in terms of the
spectral density of the reservoir. The so-calliythamical decouplingnethod is discussed in this context.
Finally, we propose aninimal decoherence modeh which the only source of decoherence is vacuum. We
optimize the fidelity of quantum-information processing under the trade-off between the speed of the gate and
the strength of decoherence.
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[. INTRODUCTION ited by interaction with vacuum, which can never be re-
moved. It turns out that the memory is relevant even for the
In spite of many remarkable results on decoherence imuantum optics regime, despite the fact that the deviation
open quantum systenjd] the problem still remains open, from exponential decay is unobservable.
involving some conceptual and interpretational difficulties in  In Refs.[7,9] it was noted that the FT method may not
the description of the dynamical quantum effect. Recentlywork, if time or space correlations do not decay exponen-
the problem has become crucial in connection with the ideaially. What we show here is that correlations in time cause
of quantum computer§2,3]. The latter stimulated a huge the noise to follow the evolution of the system that is to
theoretical and experimental effort to control evolution of protect against the noise. It follows that the FT scheme
guantum systems. This progress allows one to hope that thehould be revisited to take into account the memory effect.
oretical obstacles to building a quantum compuyt@€) can One should mention that the long quantum memory is
be overcome. To deal with unavoidable decoherence, thexhibited also by phonon environment that characterized
guantum error correcting codes have been desigAety], stronger coupling than electromagnetic vacuum. This means
resulting in the theory of fault-tolerafET) quantum com- that within the program of solid-state quantum computation
putation[6—9]. In this theory it is tacitly assumed that deco- the memory effects can become practically relevant.
herence actsndependenthyof the structure of the controlled Other programs to avoid decoherence dgaamical de-
self-evolution of the QGthe one including the quantum al- coupling[11], anddecoherence-free subspad¢ég]. We dis-
gorithm and the scheme of error correcliomhe self- cuss the first approach in the context of the real physical
evolution only propagatesthe errors. In fact, decoherence environment and conclude that it is hard to find conditions
depends on the kind of dynamics of the system of interestor which the method could be useful. The decoherent-free
and this should be taken into account. subspaces approach bases on the paradigm opposite to the
The main purpose of this paper is to provide a more comene of quantum error correction—it exploits symmetries of
plete general analysis of interrelations between decohereno®llective interaction with environment. Even though our ap-
and controlled evolution, basing on the well-establishedoroach is fully general, in this paper we will discuss the
theory of open systemglO]. We develop the dynamical, independent interaction case.
Hamiltonian description of the decohering quantum com- We also introduce aninimal decoherence modef evo-
puter, deriving and analyzing the non-Markovian mastedution, within the framework of the non-Markovian ap-
equation. We show that the long-range quantum memory iproach. The motivation behind the model is to try to take into
conjunction with self-dynamics of the quantum computer im-account only fundamental obstacles for building the quantum
plies a highly nonlocal structure of noise. This has remarkcomputer. That is, we remove any decoherence mechanism
able implications for the quantum error correction conceptthat could be, in principle, avoided at some level of technol-
The key idea of the latter is that the noise is local, so that thegy. In the model the only environment is the vacuum, and
quantum information can be hidden in multiqubit entangle-there is no internal, natural self-evolutig@he only evolution
ment. Once we do not couple the qubits through quantunof the system is constituted by quantum gatés follows
gates, the noise is local indeed. However, to protect the inthatthere issome room to optimize the process of quantum
formation against the noise, we need to produce multigubitomputation within this model. Subsequently, we obtain
entanglement. Due to memory, the reservoir will then “see”time-energy trade-off due to that fact that to perform a given
the evolution as highly nonlocal, and after some time it will gate one needs a constant amount of “action” that can be
act nonlocally itself. We argue that the long-range quantunsplit in different ways into time and energy. Higher energy
memory is unavoidable for fundamental reasons: it is exhibimplies a quick gate, but simultaneously, enhances decoher-
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ence. As a result it is possible to maintain high fidelity at the Note that in the interaction picture the quantum algorithm
expense of poorer scaling. For a sequencen @fates, the does not compute, but only “interacts” with errors, causing
physical time needed to maintain high fidelity scalem#&  them to spread more and more. The m¥fi,t,) describes
This paper is organized as follows. In Sec. Il we makethe net effect of decoherence. As we will see, in the FT
some preliminary remarks. Then we develop the Hamiltoniam€model the decoherence is “decoupled” from the algorithm,
approach in Sec. Ill. We obtain the transition m@alled so that the total decoherence amounts to the faults caused by
here the error mgpThen we pass to the Markovian limit for environment, which are then propagated by the algorithm. In
the time-independent Hamiltonian and indicate that in thehe Hamiltonian approach, the interaction with environment
non-Markovian stage the reservoir recognizes the structureill be “entangled” with algorithm, due to quantum
of levels of the systems. We discuss possible types of specaemory, and no such simple description will apply.
tral densities causing decoherence and the problem of high-
frequency cutoffs. Subsequently we discuss the dynamical B. General evolution
decoupling method. In Sec. IV we present two examples—
the QC in a memoryless reservoir, and the QC driven by
kicked dynamics. We discuss the error path interference ef-
fect. In Sec. IVC memory causing by interaction with — o= Lo+ Loy, (7)
vacuum is derived. Then we pass to the main result of the dt

paper(Sec. V), deriving and discussing the master equation, here £ is some time-dependent operatérwill describe
for decohering QC. We relate the results to the quantum emQle|f-evolution, while L is time-independent operatéinter-

coLrectmn con(c:jep;. (Ijn Sec. dVI W(f:‘ postlulz;te tff_‘;“lma" fjﬁ_' action), oy is vector. Let the free evolution af be given by
coherence modehlnd provide a formula for fidelity within operatol’ (t,to),

the model. An example of fidelity for single-qubit rotation is
presented and the time-energy trade-off is discussed. r(t,to)gtozgt, (8

Through the paper we will deal with the equation

Il. PRELIMINARIES The operator satisfies

A. Fidelity in the interaction picture

d
We consider the general case of the QC interacting with dt F(ttg) =L (Lto). ©

environmentE. The initial state of the QC is given by, . _ _ o
The dynamics of the QC without decoherence is given byl he total evolution denoted by (t,to) satisfies
unitary evolution of the quantum algorithm

'/’to—’ i =U(t,to) 'ﬂto- (1)

We will call the algorithm the total controlled evolution, i.e., Then for the e~VO|U“°” in interaction picture given by
the computation algorithm itself plus the error correctionA(t,tg) =I"(to,t)A(t,ty) we have the following formal ex-
procedures. Due to interaction with environment, the initialpansion

state will evolve into the mixture,

d . - -
3t Atto) =LA (1) + LR (L to). (10

- t t
Altte) =1+ D | dty--- | “dt,

lﬁtOHQt:K(t,to)Qtoy 2 m=1 Jit to
with ¢, =ys,. The fidelity of decohered computation is XTI (to,tm) LI (t tm-g)L - - - LT(g,to).
given by (11)
Fo=(t] o ). 3 Full evolution is given by

It is convenient to use the interaction picture. Putting ~ oot ftz
A(t,tg)=T(t,tg) + dt,, -- dt
<o><o>m§1tomtol

Alt,to) =U(to,HA(t,to) (4)
XT(t,t) Ll (ty,tmo )L - - LI'(tg,t0). (12
we obtain
I1l. EVOLUTION OF THE QC IN THE SECOND-ORDER

Here we used the notation In this section we derive reduced dynamics of the QC

interacting with environmerR. Consequently, in Eq7) the

L“J(Q): UpUT, (6) operatorZ; will be sum of free Hamiltonians of the QC and

R, the operatot.—the interaction Hamiltonian, and,—the

whereU is unitary operation. wave function of the totaQ C+ R system.
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http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

DYNAMICAL DESCRIPTION OF QUANTUM . .. PHYSICAL REVIEW A65 062101

A. Non-Markovian Born approximation Then the evolution of the reduced density matrix reads as
The Hamiltonian of the total system is of the form ec(t)=Trele(t)] is given by

_ t u
H=HoctHrtAHin:. 13 ec(t>=00<t,s>ec(s>—TrR[ f duf dwUg(t,u)
Here Hgc is time-dependent Hamiltonian of the computer, ) )
Hg is time-independent self-Hamiltonian of the environment,
N\ is coupling constant, which is assumed to be small (
>1). In the following we will remove\ from formulas by
incorporating it into interaction Hamiltoniad;,; . The latter
is of the form

X HindUo(u,w)HinUo(w,s)0c(5) @ wr

(23

Subsequently, we find thaic(t) can be written in the fol-

lowing compact form:
Hint=2 Se®Rq, (14) A
: ec(t)=Uc(t,9){ec(s) — 3[A(t,5)c(s) — ec(9)A(L,9)]

where S, and R, are self-adjoint operators. The resulting +<i>(t s)oc(s)—i[h(t,s),0c(S)]} (24)
’ C ’ & C .

evolution of the total system is described by unitary transfor-

mationU(t,s) such that . - L
The completely positive superoperatbft,s) is given by the

U(t,s)0(s)=o(t). (15) following formula:
We use the notation &(t,s)gc(s)zz}; ftduftdw<RaRB(u—W)>wR
H(e)=[H.e]. (16) X S(U,5)0c(8)Su(W,S), (25

The self-evolution of QC is given by where S,(0,8)= 024 (u,8)S,, R,(t)=e"HR, e MR are

the versions o5, andR, evolving in the Heisenberg picture
; (17 according to free evolutiomRaRB(t))szTr(wRRaRB(t))
is the autocorrelation function of the environment. The op-

where7 is time-ordering operator. Finally, the free evolution €ratorA(t,s) is given by
of the total system is

t
Uc(t,s)=Tex;{—iJ Hc(u)du

) A(t,s)=AT(t,5) = D*(1,9)], (26)
Uo(t,8)=Uc(t,s)@e RIS, (18)

o o whered* is dual map tob. Explicitly,
The initial state of the total system is given by

t t
0(s)=0¢(8)®@ wg, (19 A(t,s)=2ﬁ LduLdW(RaRﬁ(u—w»wRSa(u,s)SB(w,s).

whereg is the initial state of quantum computer, whilg (27)
is stationary state of environment. Without loss of generality,

one can assume that Finally, h(t,s) describes the Hamiltonian contribution to the

dynamics due to the interaction with environmghamb
TrR,wr=0. (20) shift, collective Lamb shift, etg. In the following we put
h(s,t)=0 by applying the renormalization procedure. We
Besides, the stater commutes with dynamics of environ- add to the Hamiltoniair oc(t) the appropriate counterterms
ment, that cancel the contributiom(t,s) in a given order of pertur-
bation calculus. Therefore, in the followingigc(t) is the
[wg,HR]=0. (21)  full physical Hamiltonian containing all relevant terms. In
this way, when passing to Markovian approximation for the
We consider the lowest-order approximation of the evolu+eservoir at the thermal equilibrium we obtain the Gibbs state
tion, obtaining from Eq(11) corresponding to the full Hamiltonian, as it should be.
One can pass to the frequency domain, putting

U(t,s):Oo(t,s)—iftdufJo(t,u)HimOO(u,s) o
° (RaRg(1)) 0= f Reg(w)e™“'dw, (28)
- JldufudwUO(t,u)ﬂimUO(u,w)HintUO(w,s).

t .
22 Y, (0)= L S,(u,s)e”“udu. (29)
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The functionR,; is called spectral densityWe then can Here we have used two models of the Di@&function with
write ® as width 1/r,

~ + oo . .
dt9ec(s)= 3, LdwRaﬁ(w)YBw)ec(s)YL(w), 5D (= 2. 5§2>(x>=s'fx(;’f). (36

X
(30)

Approximately we have™)?=775\?). The second, “non-
A - o resonant” term of Eq(35) will vanish in the limit of larger,

of the operatory, . Denoting®(t,0)=®;, the evolution in 35 the overlap between twds will decrease for larger.
the interaction picture can be thus writtéior s=0) as (This is an alternative form of a well-known rotating-wave

. Lna - approximation. More precisely, one requires><l/Aw,
0c()=Uo(t,0[ 00— 3{Pf (1),@0} + P00]l,  (BD  where

whereg,=0(0). Theabove equation closely resembles the
form of the generator of the Markovian semigroui8,10.
In the next section we will exhibit the Markovian approxi-
mation of this formula.

One notes that the crucial element here is the transition
map ® (we will call it error map. OperatorsS,, are errors D(t,5)0c(8) =77 > Rup(@)Sa(@i)0c(S)Sh(wy).
that can occur during interaction with the resenvoit [14]). apok
In particular, the map contains a propagation of errors that is (37
nothing but the evolution d8, in the interaction picture. The

overall error is proportional tfd|, where||- | is some norm

where we do not write explicitly the dependencetands

Aw=m|n{|6J_E]/|,EJ¢€J/}

Finally, we obtain

Note that the map depends bands only through the factor

(see[7)). 7=t—s. Thus (1#)&) is exactly the transition map for the
guantum dynamical semigroup in the weak coupling limit
B. Markovian limit for the time-independent Hamiltonian [10.19
Let us putt=17/2, s=—7/2, and oc=Loc (39)
He=2 €liXil, (32 with

J

where{|j)} is the orthonormal basis in the Hilbert space of Lo~=—ilH 1 d* (1 n 1 o 39
QC. To find the meaning of the completely positive niap ec=—i[Hc,ecl= 5 {®*(I),ec}+— Pec. (39
we will find the behavior of evolution for long time. We have

One can se¢l6] that we can distinguish the initial, non-

S.(u,s)= S foRUg—il20,T 33 Markovian stage, when the reservoir is “learning” the struc-
a(U9) wkzgj—ej o(weie 33 ture of the Hamiltonian of the system. This requires time
_ >1/A w. Once the structure is recognized, we have the Mar-
with kovian stage, during which the system is being relaxed to-
wards the Gibbs state of thermal equilibriumZ)¢~#" de-
Swd= X IS’ (34 termined byh.

Suppose now that we have a two-qubit system, where the
components are coupled to one another; e.g., the self-
Then the formulg30) reads evolution is to produce some two-qubit gate. Then, in the
Markovian stage the system relaxes to tmenpoundGibbs
state. Thus, the noise, after recognizing that the Hamiltonian
is compound, becomes compound itgél¥]. We will ana-
lyze it in more detail in Sec. V.

]‘y]"iéj/*éj=wk

d(s,t)0c(s) =

T ; dwRalB(w)zs(Tz)
a,B,wy

X (0= @) Sp( @) 0c()SH( i)

C. Decoherence and dissipation in the Markovian regime

5 (1) The properties of the decoherence in the Markovian limit
X7+ EB z dwR, () 8; can be read from the formul@7). We will now analyze the
a, WKT W) . . .y B
formula to get a first intuition about decoherence. First of alll,
X (0= wy) 80— w)Ss(w)ec(s)Sh(w,)  one can single oupure decoherencéhat is not connected
with energy exchange with environment. The populations of
energy levels are kept, but the phases undergo randomiza-
. (35 . .
tion. The relevant term is

xex;{ — %(wk—aq)r
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‘ sense and we have to consider local interactions with the
772, Ry p(0)S4(0)0cSH(0). (400 neighboring atoms or ions and electrons.
“p (b) Interaction with a dilute gasiVe use the model of free

Indeed.S, (0) commutes wittH . Hence this term does not bosonic or fermionic gas in the low-density approximation

lead to transitions between energy levels. Thus the term R =a' a —(a'(¢,)a (44)

R,p(0) stands for the strength of pure dephasing. On the =2 (¢)a(d,) (@ (d)a(a))

contrary, the other terms of the sum correspond to the decdfFhe spectral density is then of the form

herence accompanied by energy exchange, because the op-

eratorsS,(wy) either do not existif S, commute withH ) :f j 2 2

or describe transitions between energy levels. Note that if the Raa(@) dkdin(k)[ ¢o(K)|% (1]

spectral densityR,; vanishes foro=0, there is no pure _ _

decoherence: the decoherence is always accompanied by dis- X 8@ (k) = (1)~ w). (49

sipation. Assume, for example, that a system does not ha"‘ﬁ/pically R,.(0)>0 and, againR,,(w), falls down for

self-Hamiltonian(e.qg., spin of free electronThen there is lo|>w, a rﬁgdel—dependént cutoﬁaﬁequ,ency.

no dissipation. If in additiorR, 5(0)=0 then there iso (c) Fluctuations of molecular fieldThe influence of a

decoherence at all. local fluctuating field can be described by a classical noise
F.(t). For example, for a colored noise model we have

D. Important examples of reservoirs i
. - . . F.F.(t)y=De !, 46
We note that an important characteristic of the interaction (FaFa(t) (48

with environment is the shape of the spectral density. A genThen the spectral density is Lorentzian
eral property of the heat bath at the temperaflires the
following: D
Rya(@)=——=. (47
Rus(—w)=e MR, 4(w). (41) w?+ 7

In particular, at zero temperature, only non-negative frequenSUCh a density is relevant for the relaxation mechanism in

cies are relevant. Let us now present three important extU/Sed nuclear magnetic resonance experiments.
amples of environments.

(a) L|near Coup“ng to bosonlc f|e|c{)perat0rsRa are E. Discussion of the dynam|ca| deCOUpllng method
given by From Eq.(37) we see that one can gamble with decoher-
N ence by changing the spectrum of the Hamiltonian trying to
Re=a(¢,) +a'(da), (42 choose frequenciess, for which the spectral density is

: . o small. In Ref.[11] the method oflynamical decouplingvas
wherea'(#,), a(¢,) are creation and anihillation operators exhipited. It bases on adding a periodic, rapidly alternating
for fields ¢,,, respectively. The following form of diagonal term to the self-Hamiltonian of the QC that averages out the
elements oR,; can be obtained: interaction part, leaving some room for controlled evolution
of the QC. The method sometimes called “bang-bang” con-
trol is supported by an elegant group-theoretic framework.
Here we would like to determine what types of reservoirs
allow us to apply such a method. Consider, ag1lifi, the
where Q(k) is the energy of the bosof()(k)=k?/2m or  decoherence in the QC with a rapidly oscillating term only,
Q=vk], n(k)=1/*® -1 Typically R,,(w) grows like  given by
|w|? for smallw and then rapidly falls down fdiw|> w, (w
is a cutoff frequency For electromagnetic interactions in the H(t)=H cogQt), (48)
dipole approximation we havk, ,(»)~w* for small w,
similarly for some cases of phonon interaction. The cuto
parameterw, is model-dependenisee, e.g., Refl18]) and
characterizes the range of validity of model but does not w
mean that the frequencies> w. are not influenced by noise. S,(t,0)=> Sa(wk)ex;{i ﬁk sin(Q)t
For example, the electromagnetic interaction can be de- @k
scribed by the dipole approximation fan/c=|k|<1/r,
wherer,=e?/mc? is the classical electron radifi$9]. For
larger frequencies a different model involving nonbounde
(scattering states of electrons should be taken into account. .

The other cutoff for free electrons.=2m.c? means only Ya(w)zE Sa(wk)[co5(w)015[5(w—9)
that for larger frequencies the pair production should be @k

taken into account. In solid state. is a Debye frequency.

For higher frequencies the coupling to phonons makes no +0(w+ Q)]+

Raa(w)=fdk5(0(k)—w)(n(k)+1)|¢a(k)|2, (43

ﬁwhereH is time independent) is large frequency. We need
to deriveY ,(w). Using the notation of Eq.34) we have

. (49

Expanding the time-dependent term into Taylor series and
Oapplying the Fourier transform, we obtain

: (50
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where § stands forﬁ(rl) [see Eq(36)], ¢y are constants and Suppose thaf, are one-qubit operators. According to the
we omitted higher harmonics. Putting, into formula (30) notation of Ref[7] we will call themfaults—these are errors
we see that to obtain low decoherence, we rieggl(i) to be  caused by the reservoir, and should be distinguished from the
small for o~0 and (i) to have cutoff frequency satisfying errors resulting from propagation of faults by algorithiwe
w.=<Q. Thus one would need bell-shaped spectral densitywill denote it byU(t,s) in this sectiof. The propagation of
The bosonic field reservoirs satisfi), but, as we have al- the faults is described by the fact that the error map involves
ready mentioned, do not have physical cutoffs. On the otheB, in the Heisenberg picture. Note, that the overall error is
hand, collisonal or the colored noise have cutoffs, yet allowcaused solely by one-qubit faults and their propagation, av-
for pure decoherence due to nonzerggR0). Theconditions eraged in time. Such evolution can be described by the fol-
for dynamical decoupling can in principle be met in the QEDlowing master equation:
cavity. Then, however, the system loses its fundamental sim-
plicity: the quantum computer must now include modes of .
cavity, while the reservoir becomes the atoms building the dt ec=i[Hi.ed+Le (52
cavity.

There is another aspect of the discussed method that hagth
not been investigated so far. Namely, the time-dependent
Hamiltonian is obtained by use of external fields that can be N - T
described classicall{e.g., coherent light of the laser beam - {7 (D). e+ P(e) ®3
However, a rapidly alternating field will get entangled with - )
the controlled systertthis is called quantum back reactipn 07 ®(2)=24S.2S, . Indeed, let Eq(7) o be the density
so it must be treated quantum mechanically. The resultingnatrix of QC, £;=—iH, whereH; is the Hamiltonian of
disturbance was evaluated to be weaker than the “regular@lgorithm andL, the above generator. Applying the formula
(say collisional decoherencg20]. However, it seems that (12) in first-order approximation we obtain
for the bang-bang control, the considered effect can become
relevant. e

An interesting version of the dynamical decoupling er=U(t.t)
method was considered in RgR1]. Namely, the starting
point was to modulate the coupling constant in the interac- N 1
tion picture rather than the self-Hamiltonian. As a result, in :U(t'to)[g_E{q’f(l),Q}ﬁL‘bt(Q)}- (54)
the Schrdinger picture, the self-Hamiltonian was of the
form wHcsin(wt). Thus, in addition to modulation, the level Even though the memoryless case is not especially interest-
differences of the Hamiltonian were rescaled. Then the aboviag from our point of view, the very form of the master
analysis does not apply and conditiéin is not necessary. equation(52) is particularly useful in our context, as the
Earlier, in [28], the decoupling was achieved by adding faults themselves and the propagation are separated from one
“kicks” to the dynamics. Again, only(ii) is then needed. another. The propagation is described by the Hamiltonian
However, one can show that in the cases where the abovgrm, while the faults are described by the ndapwhich we
method works, more elementary strategies can protect thgill call fault map We will derive such a master equation in
system against the reservoir. Indeed, one can simply perforihe general case in the next section. Here, let us only mention

1 t
01 E{A'Qt°}+§ Ldusa(U,S)QSa(U:S)

fast gates, instead of fast controlling kicks. that the “fault part” of the master equation is a sum of one-
qubit operators. This means that environment atslly,
IV. EXAMPLES and the multiqubit error§.e., correlated erroyoccur solely

due to propagation.
We will present here two examples. The first one will
serve to introduce &ault mapdescribing the action of noise
with propagation excluded. In the second one we consider
the kicked dynamics of algorithm, and illustrate the differ- . ]
ence between quantum memory due to the interference of We will assume that the gates are performed quickly, so

error paths and classical memory due to their probabilistidhat they can be generated by the Hamiltonian with time
mixing . dependence given b§ function. This will not work for the
electrodynamic or phonon vacuum reservoir, as due to the
behavior w®, any rapid changes in the self-Hamiltonian
cause large or infinite contribution. Thus in this case one
The memoryless reservoir has the white-noise spectraieeds to work with Gaussian pulses. On the other hand, the
density. Its autocorrelation function Raﬁ(s—t):Roﬁé(s kicked dynamics can be used for Lorentzian spectral density.

(23

—t). Let us, for simplicity, assume independent interaction Thus we divide computation tintanto N pieces of length

B. Decoherence under the kicked dynamics of QC:
Error path interference effect

A. Memoryless reservoir: Error map and fault map

R,s(w)=R,3,5. The resulting error map is given by 7. The Hamiltonian is given by
N
t
Dy(0)=2 R‘;J duS,(u,s)@S,(us).  (51) (D=2, 8t (i—1)hj, (55)
@ s i=
062101-6
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whereh; generates thgth step of computation. The unitary respectively. In the first case we always have a mixture of the

evolution is given by

U =T, 6(t=jnu(,ji—1), (56)
whereU(j,j—1)=e M7 is thejth step of computatiofthe
group of gates performed at tinje), 6 is the step function.
Consequently,

u(1,0,
u(2,Hu(1,0),

te(0,7),

te(r27),
U=

U(N,N—=1)U(N=1N-2)- - -

---U(1,0), te((N—1)7,N7).

(57

Substituting such dynamics into the error map of Ezp),
we obtain

N
PH=2 kE ris,est, (58)
a jk=1

where S,=U[S,U;. For simplicity we assumed th&,,
=R,d,5- The coefficientsjj are given by

k7 jT
rﬁ(:f duf_ dvR,,(U—v). (59
(k=1)7 (-1

For the memoryless case we obtain the discrete counterpart

of

N
PPh=7> RO Skesk. (60)
« k=1

product of Kraus operators, in the second one we can have a
map for which such representation may be impossible. In-
deed, in Eq.(60) the errors occurring in different times do
not interfere with each other, they are added as in classical
probability calculus.

However, it seems that the crucial point is not the differ-
ence between quantum and classical memory, butiige
In Sec. V we will exhibit the remarkable connection between
the range of the memory and the multiqubit faults that occur:
the interference caused by long-range quantum memory will
give rise to nonlocal noise.

C. Memory of the electromagnetic vacuum reservoir

Here we will calculate and discuss the memory caused by
vacuum in free space. This is an important point in our pa-
per; as the vacuum is unavoidable, we cannot remove it. Of
course we can put the QC into cavity, but then, we can con-
sider the QC plus cavity as the total system; that is, again in
free space. We then prefer the latter setup, as it is more
fundamental.

Consider the two-level atom and electromagnetic field
with dipole interaction,

H=3wo3+ 0, ®dE. (62

The spectral density of reservoir in temperattiis given by

87
R(w)= ?d2w3

1
1+ —— for >0,
ehwlkT_l)

for w<0. (63

8
R(w)= —d? o/} ———
(@) 3 | |(eﬁw/kT_1>

In both formulas we see propagation of error, this time in aye must now calculate the autocorrelation function in zero
discrete mannerS], denotes theerror resulting in propaga- temperature. Taking the inverse Fourier transform, we obtain

tion of fault S, within the interval (0j7). The difference is
that in Eq. (58) we have interference due to quantum

memory. This effect of interference of error can remarkably

modify the process of error propagation.

The difference is similar to that between separable anqN
entangled mixed states. We can view the error map as thgn
(subnormalizeg density matrix and the Kraus operators asTh;
the pure components of the ensemble giving rise to the de
sity matrix. In general, the noise process can then behave
classical-like or as quantum stochastic process with time cot

relations of the form

Paig= Ej P im)S(t ) - S(t)
1" Im

xSt S(t )T,

Qo= E

i1 cimalge - dn

XS(tj )+ Sty Jest ) -s(t )T, (6D

CrJmliz - -im)

R(t)= (64)

(t+ie)*

e see that the memory scales as the powdrrather than
exponential function. Then there is no characteristic time.
s is due to the fact that Coulomb interaction has no char-

MYcteristic range. Thus the range of vacuum memory is infi-
#ite. Nevertheless, in quantum optics there is a notion of

me of memory, which is the inverse af,—the transition
frequency for the atom—and one can work with the Markov-
ian master equation, within times much longer thaay1/

This does not mean that there exists some characteristic
time scale for the vacuum reservoir. Rather, in the interaction
picture, the autocorrelation function acquires oscillating term
e'“ot which effectively makes the memory much weaker. For
optical transitions, the memory then has almost no observ-
able consequences. In RER2] the decoherence in the ion-
trap quantum computer was analyzed. From the analysis it
follows that non-Markovian effects are indeed negligible in
comparison with other types of noise. However, in the con-
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text of the FT scheme, under a pessimistic assumption that it N
is not able to correct non-Markovian errors, the latter could Le=2> Lf, (70
eventually dominate. “

whereL{ operates only on theth qubit. If we admit expo-
V. QUANTUM LONG-RANGE MEMORY IMPLIES nentially decaying memorge.g., colored noigewith charac-
NONLOCAL STRUCTURE OF NOISE teristic time rgx comparable with the time of performing a
single computational step, but short in comparison with time
] ) ~ between gates, there will be some time for the reservoir to
As we have seen, to discuss the structure of noise W|th0qéarn Something about the structure Of two_qubit Ham”to_
propagation effect, we need a master equation of the form pjans, so that the noise will be a sum of two-qubit superop-

. . N erators,
0=—i[Hgc(t),0]+L0. (65)

We will now derive such equation in second-order approxi- Lt:E Lf’ﬂ- (72)
mation. To this end, we differentiate E4), obtaining *p

A. Master equation

. N N Loa - In both cases decoherence is local. The possible faults are,
e()=Uc(t,s)e(s)+Uc(t,s)[—3{P*L,0(s)} + De(s)] roughly speaking, symbolized ki, ,L! ; and they couple at
. A A most two qubitgin general, they involve so many qubits, as
+Uc(t,s)[— 3{PLo(s)} +Pe(s)]. (66)  the used gates do
Suppose now that the reservoir has long-range memory.
We take the first step of approximation by removing the secsiill, in each step of computation, there are two-qubit gates.
ond term. DifferentiatingDd(t,s) and puttings=0, we obtain  The environment learns about their structure a bit. The effect
accumulatedue to memory, so that after a long time, the
éz—i[HQC(t),Q]—%{Yf][,g}JrYtQ, (67) noi;e is strongly nqnlocal: the generatarinvolves multi-
qubit operators, as it keeps the record of all the history of
self-evolution(i.e., algorithm. The decoherence becomes as
“entangled” as the quantum algorithm is entangling. Note
R that the effect does not depend on the time of performing
Y(t,s)(.)=z [Yop(-)S,+ SB(-)YZB] (68) gates. For short gates, the reservoir has a short time to dis-
@B tinguish the temporary levelgriving the gatg but they are
easily distinguishable, as the energy differences are high. If
instead the energy differences are low, then the time must be
. longer. This is the result of the time-energy uncertainty prin-
Y“B:f duR, g(u—1t)Ss(u,t). (69  ciple. Thus, the relevant parameter here is “action,” i.e., the
s product of the time of gate, and the strength of the applied
Hamiltonian (energy. To perform the gate, the needed
On the right-hand side of the equation we have density maamount of action must be always of the order of 1. Thus the
trices evolving according to the self-Hamiltonian of the sys-general structure of noise does not depend very much on the
tem. The second step of approximation is then to replacevay the gates are performed. In Sec. VI we will see that the
them with the ones subjected to full evolutidBetter justi-  strength of the decoherence does depend on it, so that we
fication of such an integral differential master equation carhave the mechanism of possible optimization.
be obtained within the cumulant expansion method, see, e.g.,

[23]) . . . B. Quantum memory and error correction
Now, the decoherence is essentially characterized by the

map Y, which we will call “fault map” in analogy to the

whereY,=Y(t,0) is given by

with

Let us now discuss the implication of the above results on
) : the quantum error correctiqg®Q EC) method[4—7]. The basic
error map®d, . The latter one characterizes error, i.e., the ne{gea of the QEC method rests on two assumptidisthe
effect of the “attacks” of noisgfaults) and their propagation.  environment acts locallyi) the environment acts indepen-
The present majy', describes solely the action of noise. The dently of self-evolution of the system. If the above assump-
propagation will be due to the Hamiltonian term in the abovetions are satisfied, it is indeed possible to protect the quan-
master equation. tum information against decoherence by encoding it into

Let us now discuss how the form df; depends on highly entangled multiqubit states. In the literature assump-
memory. The crucial term is, of coursg,;. In the case of tion (i) was made explicitly, while assumptidii) was tacit.
no memory(and, for simplicity, independent decoherence Thanks to assumptioti) such nonlocally encoded informa-
we obtainY , ;= J,5S,, Which is compatible with Sec. IV A. tion will not be affected by decoherendacting locally.
Assuming that eaclar denotes a different qubit, we obtain Assumption (ii) ensures that the self-evolution will not
that decoherence is local, and multiqubit errors are solelynodify the local structure of decoherence. As we have ar-
due to propagation. We can then write the generator in thgued, the latter assumption is never satisfied. If there is
form of short-range memory, the dependence on self-evolution is ir-
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relevant, and the QEC method still applies. However, theany influence of the above kir@éven though it might require
interaction with vacuum, which is unavoidable, introducestechnology that will never be achievedince obtaining ar-
long-range quantum memory, which causes the environmettitrarily low temperature is also a matter of technology, we
to be rather malevolent: it traces self-evolution, and the morean work with the only environment being vacuum. We re-
entangled the latter is, the more nonlocal the faults becommove the time-independent part of the self-Hamiltonian, as it
caused by noise. On the other hand, the self-evolutiost ~ will only cause additional dissipation.

be entangling, since it is supposed to hide the quantum in- An example of the system could be well-separated
formation just into entangled states. Thus, we have somespinss that interact with an electromagnetic field and possi-
thing a bit analogous to the Lenz rule: the structure of thebly with phonons. The controlled Hamiltoniai:(t) can be
environment attack is proportional to the structure of therealized by switching external magnetic fields and suitable
evolution that is to protect against it. It seems to be a ratheinteraction between spins. Another example is the atomic
pessimistic result, as it implies that the very ideaaofive = degenerate metastable level, with Stark or Zeeman splitting
protection against the environment is fundamentally inadused for controlling. Of course it may be impossible to keep
equate, as far deng quantum computation is concerned. the possibility of controlling interaction&@ cornerstone of a

However, the conclusion need not be so pessimistic. Firsjuantum computerand remove the influence of pure deco-
of all, decoherence caused by vacuum is small in comparisonerence. However, as said, we assume the most optimistic
with other sources of decoherence, e.g., dephasing due tase, and keep only the obstacle that cannot be removed for
collisions (pressure decoherencesolored noise or thermal fundamental reasons. By removing the time-independent
noise. It seems that the QE@nd hence the FT methpdan  self-Hamiltonian, we obtain that there is no decoherence on
be used to fight with the latter sources of decoherence, withigubits that are not active. Thus decoherence will be caused
the time window in which the vacuum-memory effect can beby the vacuum solely due to gate operations that require the
neglected. Strictly speaking, other types of reservoirs alsenergy levels to split during the time of performing the op-
have long tails in memory, however, the dominant part deeration. In the case of independent interactions of qubits with
cays exponentially. Thus the FT method could certainly bevacuum, this temporal difference of energy levels is used by
performed within the time regime satisfying the following the vacuum that forces the upper level to relax by spontane-
conditions:(i) the memory is exponentially decayijriij) the  ous emission. In the case of collective interacti@icke
memory majorizes vacuum memofis regime may prove limit) this is not the case, where one has decoherence-free
sufficient to perform some quantum computational tasks. subspacefl2].

There is also another point to addr¢S% The claim that
lack of memory is sufficient for the FT method does not
mean that it is in general impossible to improve the FT
method against some kind of memory. As a matter of fact, We putec(s)=|#)(¢] ands= -, t=+c0. The fidelity
the mechanism producing multiqubit faults we described ha§f computation is given by
some features that may be used to defend the FT scheme.

Namely, as seen from formul@9), the multiqubit fault at F=1-6=(Uc(t,s)¢lec(tlUc(t.5)¥). (73

some placex arises frombackward propagation(with de- R

creasing strengitof the single-qubit faulB, . Now since the  We will denote S,(t)=S,(—=,t)=Uc*(t,—»)S,. To

FT method is able to fight with propagation forward, it can-avoid infinite contribution from the interaction, we will as-

not be denied that it will be robust against faults correlated irsume that the interaction is adiabatically switched off at in-

such a way. However, it goes beyond the scope of this papefinity (the standard method in quantum field thed2d]).
Thus the following operators are put into formyz0):

A. Fidelity in the minimal decoherence model

VI. MINIMAL DECOHERENCE MODEL FOR QUANTUM

CONTROLLED SYSTEMS © et oot
Y ()= | S, (t)e e ot (74)

In this section we will postulate thainimal decoherence
model We then derive a formula for fidelity of quantum
computation within the model. We shall consider a class oferforming partial integration and then passing to the limit
controlled open systems for whicHc(t)#0 only during e—0 we obtain
computation of subsequent gates. The spectral deRsijty

satisfies 1 (= [d 1
Ya(w):mf_xdte"‘“t(a Sa(t))ZZXa(w)- (75

€ Raﬁ(w)
f 5 dw<ow for some €>0. (72 _ _
e We then obtain the following formula for errd:
This excludes reservoirs with any pure decoherence effects,
such as gas or colored noise. Our motivation is that we 5:2 foc d_“’R (w){<w|XT(w)X ()| )
would like to investigate only fundamental obstacles to build ) w2 P “ b
the quantum computer. The pure decoherence is not one such "
as in principle one could isolate the quantum computer from — (X)) (P X p(@) [ )} (76)
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B. Quantum information processing in the minimal 5:(<¢|U+U—| ) — |<¢|U+|¢>|2)a2Rot1_2- (84)
decoherence regime

We consider the simplest quantum gate: rotation of al@king the average over possible input stajese get
single qubit by an anglere[0,27], in the case of a two- 51— R-?t-2 85
level atom coupled to the electromagnetic field at zero tem- 17 Ro®
perature. The time dependent Hamiltonian will be of the

up to a constant factor.
form Ho(t)=f(t)o,, with P

We execute “algorithm” with actiorA in n steps(gates,

w i.e., a=A/n=0(1). It turns out that the formuld76) is
f f(t)dt=a, lim f(t)=0. (77) additive with respect to the composition of gates. To see it
— t—xo considern Gaussian pulses of width separated with time

. . . r=mt;, where m>1. This is the smooth realization of
The interaction Hamiltonian islj, = o,® ¢, and the spectral  jcked dynamics considered earlier. One finds

density, as discussed earlier, is
n
Row® for =0, X (w)=>, e i"07(j7,0Y! (), 86
Rew)=| 7 78 a(0)=2, (I7.0Y,(@) (86)
0 for w<O.

. L where
The full unitary transformation is given by

. 72 ) d .
Uc=Uc(%,—»)=g (2o, (79 YJa(w)=J e 't UT(Ljn)s,. (87)
—7/2

The parameter is the amount of “action” needed to per-
form the transformation. Roughly speakingjs the product
of energy pumped into the system during the performing gat T
and the time of operation. In the case of nonrectangular puls PIXal@)Xg(@)]9)
shape, the time is given by the width of pulse. Typically, if i =)/ 1 it j )
the energy is low, then the accompanying dissipation is :2 e (U004 YL (@) Y,(@)|U(j7,004).
small; however, the time of the operation is loqghile in 1
guantum computation, one would prefer short-time gates (89

Adding more energy, we obtain short time, but simulta-_ . .
neously enhance decoherence, causing loss of fidelity. Let uking the large separation between gates, we obtain that the

Now, we have, for example,

now calculate the fidelity. We have terms involvingj#j’ are averaged out by rapid phase rota-
tion. The remaining term is nothing but the sum of single
X(w)=F_(w)o +F_ (w)o™, (80)  gate terms.
Consequently, fon pulses with average errd; the total
where error is given by
Fi:f dte "“'f(t)e*'¢M (81) oo (89

Suppose now that we would like to keep the total error below

. ot . some threshold, then we obtain the following estimation
with ¢(t)=J..f(u)du. From the formula76) one easily for the time of computationc=n(m+ 1)t; (wheret, is the

finds that any rapid variation df(t) will result in large error. . ;

Indeed, the changes produce long tails of the Fourier transtl—me of single pulse
formsF.., which, integrated witlRyw for =0, give poor 1
fidelity. In order to minimize this effect, we choose the tCB—R},’Z(m+ 1)n%2 (90)
Gaussian shape of the pulse Ve

a 1 In conclusion, it is possible to keep high fidelity, at the ex-
f(t)= —exr{ — = (t/ty)?], (820  pense of worse scaling of the physical titge-n®?in com-
V2t 2 parison with “algorithmic” timet,;g~n.
) i ) Finally, one should mention that our result is not restricted
wheret; can be taken as the time of performing a single, the simple one-qubit system. If one takes two qubits, and
gate. Using the approximate formufg(t)=f(0)t+a/2 one  gome two-qubit gate, the reasoning will be similar. If the

finds system isK qubit (still with, say, at most two-qubit gates
1 1 \2 the only difference will be the need of scaling fidelity per
_ = + one qubit as K to get high fidelity of the total finaK-qubit
[F(o)) aex;{ Z(Q)tc_aw/gw) } (83 state. This can be achieved by further slowing down the
gates. Finally, to keep high fidelity of the quantum computer
Consequently, the error can be estimated as follows: in vacuum we need physical time to scaletgs n¥2 /K or
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te~ny/v, wherev =nK is the complexity of the problerfor  coupling to a boson field is concerned. The effects are rela-
volume of the algorithm i.e., the number of steps times the tively small for coupling to electromagnetic vacuum. Our

number of qubits needed to run the algorithm. results can have practical meaning for the systems interacting
with phonons, like, e.g., quantum ddif. [25]), where the
VII. CONCLUDING REMARKS coupling is much stronger. Then the memory effects can be

of similar order as other sources of decoherence. There are
We have developed a dynamical description of a decoher|so less fundamental but practical sources of memory such
ing quantum computer. We have obtained dependence of thgs the heating mechanism in ion trdgs].
structure of decoherence on the quantum memory of the res- Fina”y, we believe that our non-Markovian dynamica| de-
ervoir. The nonlocal structure of decoherence Implled byscription of quantum Computing will have some meaning for
vacuum memory suggests that long quantum computation &fiture practically useful implementations of the quantum
constant error rate is impossible. Instead, one should deabmputer involving large numbers of qubits and a relatively
with short-time quantum computation by the use of low fre-|ong time of computatioh27].
guencies. This of course requires optimization of the kind we
performed in the last section. However, that the scheme of
FT quantum computing can be defended cannot be excluded. ACKNOWLEDGMENTS
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