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Abstract

The residue-to-binary conversion is the key operation in all digital signal proces-
sing applications that use the Residue Number System (RNS). In this work a new
conversion technique based on the Chinese Remainder Theorem (CRT) for
5- and 6-bit moduli is proposed. It is especially suited for the realization with the
use of binary arithmetic. The specific property of the technique is a way of calcu-
lation of the excess factor » in the CRT formula that makes possible, under certain
conditions, the reduction of processed numbers from the range [0,nM ) to
[0,2M) where M is the product of moduli. This is done by replacing the calcu-
lation of r by the computation of the result of division of the sum of projections
by a power of 2 close to M. Such approach allows for very effective hardware
realization of the converter. Only small ROM’s and standard binary adders are
required. Moreover, the pipelining on the Full-Adder (FA) level is possible.

Streszczenie

Konwersja liczb z systemu resztowego do systemu binarnego jest podstawowa
operacja we wszystkich uktadach cyfrowego przetwarzania sygnatow, ktore wy-
korzystuja system resztowy. W niniejszej pracy zaproponowano nowa metodg
konwersji oparta o chinskie twierdzenie o resztach dla modutéw 5- i 6-bitowych.
Specyficzng cecha nowej metody jest sposob obliczania tzw. wspotczynnika nad-

miaru ¥ =[ZZ=[ X; / M ] w formule chinskiego twierdzenia o resztach, co
umozliwia pod pewnymi warunkami, redukcjg przetwarzanych liczb z zakresu
[0,nM ) do [0,2M ), gdzie M = szl m; Jest to realizowane poprzez zasta-

pienie obliczania r obliczaniem 7y = [Z'];l X; / M B], gdzie M, jest potega
liczby 2 bliska M. Takie podejscie pozwala na bardzo efektywna sprzgtowa reali-
zacjg konwertera. Konieczne sg tylko mate pamigci typu ROM i standardowe

sumatory binarne. Ponadto mozliwa jest realizacja potokowa z czgstoliwoscia
ograniczong opdznieniem sumatora 1-bitowego.

Keywords: digital signal processing, fast computer arithmetic, residue num-
ber system, residue-to-binary converter

Slowa kluczowe: cyfrowe przetwarzanie sygnaléw, szybka arytmetyka
komputerowa, resztowy system liczbowy

1. Introduction

There are many areas of science and technology in which add-multiply
intensive, digital high-speed architectures are needed for processing of
high-frequency signals in real-time. The exemplary applications are beam-
forming or high-resolution sampling of radio-frequency signals. The
Residue Number System (RNS) [1] is advantageous for such applica-
tions since it permits high-speed low-level pipelined realization of addi-
tion, subtraction and multiplication. The RNS allows to replace opera-
tions in a large integer ring by the set of operations in smaller integer
rings. Addition, subtraction are performed independently in the indivi-
dual rings without carries between the positions of the number. In the
RNS, the nonnegative integer x from the number range [0, -1] is

represented by n-tuple (lX |m1’ 'X |m2,~~-, |X m, ), where the digit |X lmj is
the smallest nonnegative residue from the division of X by m;,
Jj=L23,...,n, where m, are the elements of the system base,

B={m,,m,...m,}and M = H’”j . The moduli m; should be pair-
p

wise coprime in order to preserve one-to-one mapping between the num-
ber set and the representation set. The relationship between these sets is
given by the CRT[1]. Each RNS-based architecture requires input and
output processing, which usually ecompass the binary-to-residue and
residue-to-binary conversions. The latter is much more complicated than
the former. The conversions along with the other difficult operations in
the RN such as sign detection, magnitude comparison, overflow detec-
tion, scaling and division, have prevented the RNS use in general com-
puting, limiting its application to the situations where it seems to be
absolutely necessary. The residue-to-binary conversion has been imple-
mented using the Mixed-Radix Conversion(MRC) algorithm [1, 2, 3,
4], or the CRT [1], [6-21], or the concurrent use of the CRT and MRS
[5]. or the so-called core function [23]. The conversion based on the
MRC is a relatively slow process in which first the RNS/MRC conver-
sion is performed and subsequently the MRC/B. The CRT-based co-
nversion is currently the most frequent approach. The main drawback is
the necessity of performing the modulo A operation with M being a
large number where the value to be reduced is the sum of orthogonal
projections of the RNS number. In principle, there are two main appro-
aches to the implementation. The first approach is to compute initially
the sum of projections in the binary form and then perform a series of
comparisons with n —1 multiplicities of M. Fraser and Bryg [6] limited
the number of comparisons to one for a certain example and Cheng and
Huang [7] proved for this technique that as the number of moduli incre-
ases, M should approach the power of 2. The second approach is to add
every two operands in binary, detect overflow and make correction if
necessary. For n operands the sum can be received using a tree of two-
operand modulo M adders, but these devices are, in general, much more
expensive than the binary adders. Taylor [8] assumed a special form of
M, M =2* —2', with k, [ integers, that allowed for the realization of
detection and correction with a simple logic but such a form of M seve-
rely limits the choice of the RNS base. Jenkins [9] proposed the compu-
tation of the sum with a bias in order to obtain the overflow in binary
addition, indicated by the most significant carry bit, instead of overflow
modulo M. Nevertheless the correction still may be needed. Zhang et al.
[10] extended this method through the use of the redundant carry-save
representations. Elleithy and Bayoumi [11] proposed an effective struc-
ture using a range determinator, so that the appriopriate value can be
subtracted using the carry-look ahead adder. Piestrak [12] suggested an
efficient reduction of the sum to the interval [0, 2M) using the carry-save
representation and a modulo M generator for the number represented by
the most significant bits of the carry and save vectors. This allows for the
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final modulo M generation based on two binary adders working in pa-
rallel. This conversion technique uses only one [log M bt addition in
series (all logarithms here are logarithms to the base of 2). However, for
the greater number of moduli this approach becomes less effective due
to the growth of the ROM used in the structure. The new conversion
technique was recently proposed by Y. Wang [13], but this approach
does not seem to be effective since several multipliers are needed with
the maximum size of |_O.5 -logM -I-bits. In general, the complexity of
the CRT computation depends on the number and the form of moduli.
The DSP applications use two classes of moduli, the first are the moduli
with the binary size [logm |< 6 bits, that can provide the sufficient pa-
rallelism and the processing structure can be based on small look-up
tables and boolean logic only. The second group are moduli akin to the
powers of 2, eg. (2% —1,2%,2% +1) or (n—2*%,n +2*). For the former
group the most efficient converter was shown recently by Z. Wang et
al.[14], whereas for the second group by Cardarilli et al.[15]. Such mo-
duli simplify the conversion and allow also for the wider use of the bina-
ry arithmetic components, but the RNS parallelism is limited due to the
small number of the RNS channels. Along with the CRT techniques
based on the integer arithmetic, the techniques using the real arithmetic
have been developed. First of them is the technique called the Approxi-
mate Chinese Remainder Theorem (ACRT) introduced by Soderstrand
and Vernia [16], where the modulo M operation is avoided by using
a sum of fractions that represent the orthogonal projections scaled by M.
The conversion result is obtained as X/M. This technique was further
developed and analyzed in [16, 17, 18, 19]. The other techique based on
fractions, for conversion and sign detection was introduced by Vu [20].
A similar approach was taken in [21] for computation of the excess fac-
tor in the CRT formula, i.e. the number of times the number to be redu-
ced overflows M. In this case the modulo M operation requires one bina-
ry adder operating in parallel with the calculation of the sum of projec-
tions, and a multiplier of a small number by M, implemented as a look-
up table. Recently a technique based on the fractional approach was
presented by Cardarilli et al. [22].

In this paper a new technique of computing X by the CRT is propo-
sed. The technique makes use of the modulo M , operation result with
M , =27 instead of the modulo A operation. The concept can be used
in the digital devices performing complex operations in residue arithme-
tic but with no limitation to this very area alone. In Section 2 the princi-
ple of the technique is shown, in Section 3 the computation in the binary
arithmetic is derived and in Sections 4 and 5 the hardware realization is
suggested along with the analysis of the hardware amount and proces-
sing delay.

2. New CRT computation
The value of X, with the use of the CRT[1], is given by the formula

X=3x, )
=y
or equivalently,
X=XX,| =XX,-rM ()]
Jj=1 v J=l
where 7 is a nonnegative integer, » < n, such that
Z X i 2 X j 2 X j
po ! R 1Y =
M M 3
=1

with X, =M, -

Ml |6 =M and
i m; j m;
M is called the multiplicative inverse of M ; modulo m , and exists if
gcd(M,.,mj)=l.

It is seen from (1) and (2) that the value of X can be computed by the
CRT in two, mathematically equivalent, ways. However, the realizations
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in arithmetic devices are different. The use of (1) requires the application
of the multi-operand adder modulo M, where M is usually large. The
digital realization of such an adder is complex and for this reason (1) is
not taken here under consideration. The solution with the use of (2)
which leads to a simple realization based on binary adders and small
ROM?’s, is considered below.

Let X be an integer from the RNS number range [0,M-1], and let
M be a power of 2 such that M <M, or M> M. Then we can
write

NX,=ry Myg+Xy=r M+X @)
Jj=1
with X =3 X | <M,and X, =D X,| <M,
Ay = Y8

Consider two cases.

CASE 1. M <M ,. Itis intuitively evident, that in this case r, < r, but
for completness it will be formally proven below.
LEMMA1L.IfM, >M thenry <r.
Proof. We shall prove that (4) can not be fulfilled if it were r, > r.
Assume conversely that

rg=r+p, p=0,12,..,0... 5)

Inserting (5) into (4) we obtain the inequality
r-My+p-My+X, >r-M+X » therefore (4) can not hold. Hence, r, < 7.

Regarding LEMMA 1, we may write

rg=r—p, p=0,1,2, ..., P (6)
where pisrelatedto d =M, - M .

As r<n, hence in view of LEMMA 1, r,, < n. The lower bound of p
is 0, and the upper bound is #-1, also p <r.

Now we shall prove the theorem that shows how X can be computed
in binary arithmetic using X ,, r,,and p. ‘

STATEMENT 1. The CRT given by (2) for M, > M is equivalent to
the formula
X=Xg-pMy+d-1,+p-d=X,+8-r,—p-M (7

Proof. (7) can be received by inserting (6) into (4).

Because of hardware complexity when (7) is used, p should be as
small as possible, but 0 = M, — M and the maximum value of p are
related. In the following we shall determine the conditions under which
p<1
STATEMENT 2. Given M and M . If

m-)-M>mn-2)-M, ®)
then
p=r-r, <1 (O]

Proof. The maximum value of 2 X canbe expressed as
j=1

n
XEIE%%{X_U o X;=maxr- M+X,  =maxry -My+Xg,. (10

o X = ‘max X, .
In most cases that have the practical signif}_cance max 2]’:1 X ; be-

longs to the interval [(n —1)- M ,n- M ] and it can be expressed as
max Y, X, =—1)M+X,, 1

For the maximum value of 0 we have the following condition

maxp=maxr—max r,=

X~ Xy M X, =Xy .
m <

M B

X 5 ma» if (8) holds, is expressed as

13)

Bmax

(=D M+X,~(1=2)- My, i X, <(n=D)-M,
=DM X ~(i-) My, Y X, > (=DM,
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Regarding (5), (8), (10),(13) we receive for both cases of X .

n—1)-M+max Y’ X,-X
(n-—l)—( ) 20X, X o <1 (14)
MB
CASE2. M ,< M .Inthis case r, > r. It is formally proven below.
LEMMA2. If M, <M then r, > r.
Proof. We shall prove that (4) can not be fulfilled if it were r, <r.
Assume conversely, that
r=ry+p, p=12,... (15)
Inserting(1) into (4) we obtain the inequality
Ty My+X,<r,-M+p-M+X and (4) can not hold. Hence,
rg2r.
Regarding LEMMA 2, we may write
rg=r+p, p=0,1,2,..,p ., (16)
where p,, ,asin CASE 1, is related with 9" =M — M ,.
Asr<n,wehave r, <n+ p_. . Now we shall prove the theorem for
the calculation of X using X ,, rp,and p.
STATEMENT 3. The CRT given by (2), for M, < M, is equivalent to
the formula
X=X,-1,-8 +p-8 +p-My=X,-1r,-6 +p-M (17)
Proof. (17) can be obtained by insering (16) into (4).
We shall determine the conditions under which p <1.
STATEMENT 4. Given M and M ,, if

nM,>@m-1)-M (18)

then
p=ry—r<l (19)

Proof. Using (10) and (11) we may write (19) in the following form

n
maxz X -X maxy . X. =X
=1 Bmax =1 max
max p=max r,—maxr=

M, M

<1 (20)

if (18) holds, is expressed as

Bmax’

(n=-)-M+X,, —(n-D-M,,

) (=) M+ X, —n- M,

ifmaxz;lXj <n-M,

if maxy,’ X, >n-M, @1

Regarding (20), (10), (18), (21) we receive for both cases of X .

(n-1)-M +max2]_:1Xj —Xgm
MB

——-(n-1<l 22)

3. Computation in binary arithmetic

Statements 1 and 2 can be applied to perform the calculation of X witho-
ut the modulo M arithmetic and using binary arithmetic only. We remark
that every X, from (2) can be obtained in the binary form at the output
of Look- Up-Tables (LUT’s), which are addressed by the residues Pg‘)
Y.j4 X, can be received using an n-operand binary adder. The optlmal
structure of such an adder is the Carry-Save Adder (CSA) tree with the
two-operand Carry-Propagate Adder(CPA) in the Carry-Look-Ahead
(CLA) adder form as the final stage. At the output of the CLA, for
M <M, we obtain

:lej=X+r~M=XB+rB'MB=

-1
XB+rB'2P=Zdi’2i<n‘MB=n~2p 23)
i=0
where /= p+[logn]. X, and r, can be obtained as below
n - .
XB=2Xj =|XB+rB'2p‘2,, =zdi‘21 (24)
= My 2? i=0
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n -1
ZXj_XB Zd,.‘z’ Zd 21
ry = J=1 _ i=0 i=0 —
My 27
Sd, 2 .20 =
B =Yd, 2’P—de 2k
2p i=p

where k =i-p.
From (23), (24) and (25) it is seen that the binary representations and

rp can be obtained from the binary representation of 2;;1 X; as the

first p least significant bits and / — p most significant bits of X ,, respec-
tively. Only binary adders and ROM’s are needed.

The formulas for computation of X when the condition M > M , is
fulfilled, can be derived similarly.

4, Hardware realization

Once X,and r, are given, for p . =1, the final modulo generation of
X can bebased on STATEMENT 1 for M < M , if (8) is fulfilled. We get
the following formulas
X=X,+6 r, for p=0 (26a)
X=X,+6-r,-M for p=1 (26b)
If (18) is fulfilled the generation can be based on STATEMENT 3 as
follows
X=X,-6-ryfor p=0 (27a)
X=X,-8-r;+M for p=1 27b)
In each pair only one formula gives the correct value of X, and this
value should be selected. It is assumed that both formulas are computed
in parallel, and the nonnegative value is selected as the correct result.
The converter structure is shown in Fig. 1.
The circuit operates as follows. The sum of the orthogonal projec-

tions, z:=1 X; is computed using Carry-Save-Adder tree with the
subsequent two-operand Carry-Look-Ahead (CLA) adder. p least signi-

| | X, | X, ficant bits of the sum represent X ,, and
[Row] R on [ — p most significant bits represent 7.
Next, r,, represented by [log n]-bits, is

multlphed by 0. Since [log n] usually

n- operand CSA4 tree adder

I T does not exceed 4, the multiplication can

[ 2-operand CLA adder | be done by simple logic or a very small
> x ROM. Two possible values of X are

7 X computed by two parallel CLA adders

5 and then the correct value appears at the

51, output of the multiplexer (MUX) con-
MYV trolled by the carry bit of the left-hand
Cff/‘ ad\l‘ief adder that computes X, +0 -7, — M.

[ cLd adder |

Fig. 1. The hardware realization of the CRT
Rys. 1. Sprzgtowa realizacja CRT

5. Time-hardware complexity of new converter

The time-hardware complexity of a VLSI circuit can be considered in
various ways in dependence on its form. For the prospective FPGA im-
plementation the number of Configurable Logic Blocks (CLBs) [24]
used as logic functions, FAs, registers or memory can be estimated along
with other resources. Such analysis allows to select the appriopriate size
of the FPGA. For ASICs based on Standard Cell Library(STCL), the
area occupied by the logic elements, expressed in um” or GE(Gate Equ-
ivalents), where the GE is the area of two-input NAND with fan-out=1.
Equivalently, the GE can be expressed in transistors. The STCL allows
also a rough estimate of power consumption for the required frequency
of operation. Here the complexity analysis will be based on the ROM
model used in [12], and logic components from Samsung 0.18 4 STDL
130 [25].
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A. ROM model
The approximate area of the ROM (2" x p), A ROM (2" py 18 €Xpressed
in transistors as

AROM(Z"’xp)=([m/2]+1)‘2[mn] +P‘2m +p([,n/2]+2)2[m/2] +p.(2[p/2] +1) (28)

The delay of a ROM (2" x p), using the FA delay, ¢, as the unit, can
be expressed as

tromerep = 1 [log, m]+[m/2])/2 29)

B. Models of logic components
In Table 1 the data of the individual logic components is shown
which will be used in the analysis.
The symbol NANDxD1 denotes the x-input NAND gate with fan-
out=1 (1 drive).
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tcnnv - tROM(2D"g"'] X Pyiax) + tCSA(n) + tCPA([lognM])+ tr5 +

+esan) +tCPA(|:lognM]) +tMUX(2—1) (33)
where
- 1 om0 p )
- tesamy 18 001y, where O(n) is the number of layers in the
n-operand.

CSA tree computed using the recursive formula from [11], shown in
Table 2.

Table 2. The maximum numbers of operands
in the CSA tree for n=1,2,...,8

Tabela 2. Maksymalna liczba operandow, my,y dla liczby warstw 8(n) w drzewie
CSAdlan=1,2,...,8

, .y fOr the number of layers 6(n)

Table 1. The hardware amount in GE and maximum delays of the logic compo- 6@) 1 2 3 4 5 6 7 8
nents Samsung 0.18y STDL 130 i
Tabela 1. Ilo$¢ sprzgtu w GE i maksymalne opdznienia elementéw logicznych n 3 4 6 9 13] 19| 28| 42
z biblioteki Samsung 0.18 STDL 130 - . _
Gate NAND2D1| NAND3D1| NAND4d1 | NANDSD1 INVD1 INVD4 FA
GE 1.00 1.33 1.67 4.33 1.00 1.67 7.33
Delay [ns] 0.13 0.18 0.23 0.31 0.12 0.08 0.54

C. The hardware complexity of the new converter

It is assumed that all moduli of the RNS base have the same binary
length b=|logm, |<5,/=1,2,....n.

The hardware amount of the new converter A
the following manner

A =10 Ay iy + Acsion + Acoaugmny + Ags + Acsia+
+2- Acps(logM ) +[logM |- Ayuxa

where Acgyy =M —2)- |:10g nM:|~ A, + [log n] Ap,,and A, is the

FA area, Acpppy =k - I:log k:|~ Ap, , the CPA is assumed in the form as in

(14], Ayux =3 Ayawpaor + Ao

The r,0-block (Fig. 1) can be implemented as the
ROM (2045 Tog ryy4x 6 1) or as the block of [10g 7, 6 | logic func-
tions of [10g ry,,. | variables. For the ROM-based realization we obtain

can be expressed in

conv

(30

A5 rom = [l:lOg rBMAX5:|/ Pmax :l AROM(z[“’g 5] 3D

*Puax )

where p,... is the maximum size of the ROM output word. Such appro-
ach seems to be more flexible since it is, in general, difficult to select the
ROM of the appriopriate size in the given standard cell library. For the
implementation based on logic functions we have

Asor = DOg Tpmax * 6]' ALk Qo ravax D (G2

Where A fiog 1,y ) dENOtes the hardware amount of the (108 7ppuax
variable logic function. It is enough to consider only 3- and 4-variable
logic functions as the maximum number of coprime moduli, with the
binary length not exceeding 5 bits, is 10. For logic functions the general
form is assumed in which all functions of the given number of variables
can be realized. The 3-layer NAND realizations are assumed in the fol-
lowing form

3-variable logic function 3 INVD4- 4 NAND3D1- 1 AND4DI
(or 1 AND 4D1),

4-variable logic function 4 INVD4- 4 NAND4D1- 1 NAND8D1
(or 1 AND-8D1).

In the above description the number of gates is given for each layer.
This approach is due to the fact that the upper bound is sought for and all
logic functions of the given size can be realized by changing the connec-
tions of the input inverters and the gate in the third layer.

D. The delay of the new converter
The delay of the new converter can be expressed as follows

- Lopa (Log it = (1+1log log nM)-t,,
- U5 = ool p,, ) OF =1t p, fortherealization based on logic func-
tions

- bax 2y = Ivwpr 2 tyanpapi

6. Numerical examples and comparison

‘We shall compare here the hardware amount and delay of the new co-
nverter with the Piestrak converter from [12], for the three RNS bases:
B,={32,31,29,27,19}, B,={32,31,29,27,25,23,19} and
B,={32,31,29,27,25,19,17,13,11,7}. The dynamic ranges for these ba-
ses are approximately 24, 33 and 47 bits, respectively. We have to select
for each base appriopriate M ,, so that the condition (8) or (18) is fulfil-
led, if it is possible at all for the given base. For the first base we have

My = H; m; =14757984, and 2** =16777216, and (8) is fulfil-
led as 4.14757984 > 3-16777216; similarly, for the second base we
obtain M 5, =1'[;=1 m; = 8485840800and 2% = 8589934592, with
68485840800 > 5- 8589934592, whereas for the third base we have
Mgy =[] m; =1444035528993600 and, we sce that M , is close

to 2*7 but M ,, > 2, and so as (8) is not fulfilled, we have to examine
if the relation for the CASE 2 can be used, i.e. (18). We find that
11-140737488355328 > 10-1444035528993600-

The hardware amount of the converter from [12] can be expressed in
the following form

Acomep =N AROM(2bx[lognM:| +Acoum + AROM(Z’x[logM] +2Ac00)

+2:Acpy fognr] T [lOgM ] “Ayux e

where r is the size in bits of the MSB converter; for n,=5, n,=7, and
n,=11, we have =7, r,=8, and r;=9, and the delay

t t

Rom 20 xp ) * eyt tROM(z’xpMAx)+2tCSA<l) +

L‘OnV=
+ tCPA(EognM]) + tMUX(?.»l)

Using these relationships for the converter from [12] and models
from Section V for the new converter the hardware amounts, delays and
maximum pipelining rate for both types of the converter and the indivi-
dual bases have been calculated. The obtained hardware amounts expres-
sed in transistors are shown in Table 3, and the delays in Table 4.
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Table 3. Hardware amounts in transistors.
Tabela 3. I10$¢ sprzgtu wyrazona w tranzystorach.

RNS base B B, B,
New converter 22179 39345 75817
Converter from [ 12 ] 22674 45692 99621

It is seen that the new converter has the lower hardware complexity
for the larger dynamic ranges, but it is about 10% slower for all conside-
red RNS bases. It was assumed that §-block is implemented using
3-variable logic functions for B,, and 4-variable for B;. The maximum
pipelining rates are presented in Table 5. The unit for the numerical valu-
es is the FA delay, ¢,.

Table 4. Delay in ¢,
Tabela 4. Opoznienie w ¢

RNS base B1 B, B,
New converter 21.5 24.5 25.5
Converter from [12] 19 21.5 24

Table 5. Maximum pipelining rates
Tabela 5. Minimalne okresy probkowania

RNS base B, B, B,
New 3.5+1, 3.5+t 3.5+1,

converter (1+,) (1+2,) (1+;)

Converter

from [12] 3.5+¢; 4+1; 5.5+1;

t, - is the latch delay. For the new converter the values in the parentheses
denote the pipelining rates for the memoryless converter, i.e., such in
which it was assumed that the input look-up tables are implemented
using the 5-variable logic functions. However, they have to be individu-
ally designed since the use of the models similar to those presented in
this work would increase the hardware amount by 90-100%.

7. Conclusions

An effective CRT-based residue-to-binary conversion technique for five-
and six-bit moduli, but not limited to this class, is proposed. The effecti-
veness is due to the new algorithm for the reduction of the sum of ortho-
gonal projections to the range [0,2M ) . The algorithm is based on the
indirect calculation of the excess factor in the CRT formula with the use
of the directly given quotient of the sum of projections by the integer
equal to a power of 2. Fast small ROM’s and fast parallel binary adders
are used in the hardware realization only. The maximum ROM address
size does not exceed the binary size of the moduli. The proposed conver-
ter architecture has the lower asymptotic hardware complexity than the
other known architectures. The time delay for the smaller number ran-
ges is by 10-15% greater than that for the fastest architectures. The ma-
ximum pipelining rate is higher than for the other high-speed realiza-
tions. In the extreme case, the FA level pipelining can be attained when
the input look-up tables are implemented using boolean circuits, howe-
ver in this case the logic minimization is required.
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