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Quantum morphogenesis: A variation on Thom’s catastrophe theory
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Noncommutative propositions are characteristic of both quantum and nonquétcimlogical, biological,
and psychologicalsituations. In a Hilbert space model, states, understood as correlations between all the
possible propositions, are represented by density matrices. If systems in question interact via feedback with
environment, their dynamics is nonlinear. Nonlinear evolutions of density matrices lead to the phenomenon of
morphogenesis that may occur in noncommutative systems. Several explicit exactly solvable models are
presented, including “birth and death of an organism” and “development of complementary properties.”
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[. INTRODUCTION A system interacting with the environment is statistically
characterized by nontrivial conditional probabilities. In the
Thom’s catastrophe theory is an attempt at finding a unifanguage of non-Kolmogorovian probability calculus, this
versal mathematical treatment of morphogengsjsunder-  implies that states are not given by simple tensor products of
stood as a temporally stable change of form of a system. Thetates. On the other hand, a simple tensor describes a state
theory works at a meta level and does not crucially dependnvolving no correlations and hence neither interactions nor
on details of interactions that form a concrete ecosystenféedback. o _
organism, or society. In order to achieve this goal, the analy- AS a consequence, the nonlinearity representing feedback
sis must deal with qualitative classes of objects and has tghould disappear if the system in question and the environ-
possess certain universality properties. ment are in a product state. The latter property may be used
The purpose of the present work is similar. We define g0 reduce the class of admissible nonlinear evolutions. In the
system by an abstract space of states. The set of propositiohtilbert-space language, the state of a subsystem is repre-
that define properties of the system is, in general, nonsented by a statistical operatorthat is not a projectofi.e.,
Boolean. In particular, propositions corresponding to thep®#p) Whenever the state of the composite system
same property may not be simultaneously measurable if cofsubsystert environment) is not a product state. Therefore,
sidered at different times. Also, at the same time there majhe conditionp®= p characterizes states of subsystems which

exist sets of mutually inconsistent propositions. do not interact with the environment. This leads to the fol-
Although formal logical systems of this type are well lowing restriction: The dynamics of is linear if p>=p.
known from quantum mechanig], it is also known that the The latter condition is still not restrictive enough since it

scope of applications of non-Boolean logic is much widercan be satisfied by both dissipative and nondissipative evo-
[3-7]. Practically, any situation involvingontextsbelongs lutions [10]. We shall restrict the dynamics to Hamiltonian
to this category. Formally, a context means that a logicapystems. In the present paper the Hamiltonian functions will
value associated with a given proposition depends on thee time independent, which roughly means that the form of
history of the system. In particular, the order in which questhe feedback does not change in time.
tions are asked is not irrelevant. Finally, we want to make the discussianiversal By this
The systems we shall consider are probabilistic. The morwe mean two things{1) The Hamiltonian functions should
phogenesis will be described in terms of probabilities or unbe typical of a very large class of dynamical systems, @nd
certainties associated with given sets of propositions. Théhe results should not crucially depend on the form of a feed-
contextual nature of the propositions will require a represenback, but more on the very fact that the feedback is present.
tation of probabilities different from the Kolmogorovian ~ The most universal Hamiltonian functions seem to corre-
framework[8] of sets and commuting projectofsharacter-  spond to Hamiltonians with equally spaced spectra or, more
istic functions. Propositions will be represented by projec- Precisely, whose spectra contain equally spaced subsets. The
tors on subspaces of a Hilbert space. class of Hamiltonians includes harmonic oscillators, quan-
Another element we regard as crucial ileadbackFeed- ~ tum fields, spin systems, ensembles of identical objects, and
back means that the system under consideration interacigany others. Quite recently, the role of Hamiltonians of the
with some environment. The environment is influenced byharmonic oscillator type was shown to be relevant to the
the system and the system reacts to the changes in the endiynamics of a stock market1].
ronment. Even the simplest models of such interactions lead A linear Hamiltonian dynamics of is given by the von
effectively to nonlinear evolution equatiofi9]. Therefore, Neumann equation
instead of modeling the interaction we will say that the feed-
back is present if the dynamics of the system is nonlinear, o
with some restrictions on the form of nonlinearity. ip=wp, (1)
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with wp=[H,p]. Equation(1) may also be regarded as an The Sch'r'giinger equgtion may be regarded. as a diffusion
abstract representation of a harmonic oscillator. An oscillatofguation in complex time. Similarly, the nonlinear von Neu-
occurring in many applications in biological sciences is,mann equations can be mapped into diffusion type equations

however, the nonlinear oscillatgd2], whose abstract ver- by replacingt by it, or by admitting non-Hermitiaki; . The
sion reads Darboux techniques we are using are not restricted to Her-

mitian operators.
_ R The self-switching solutions discussed below correspond
'P:Z w;fi(p). @ 1o certainp(x,y) # ¢(x) ¢(y). The “patterns” we find in ex-
: plicit examples are illustrated by the probability densities
The “generic” equation, which is the basis of our analysis, is
therefore the von Neumann—type equation Pe.x= (X| p¢|X) = pe(X,X). (9)

ib:; [Hj ,fj(P)]- (3) IIl. ENTITIES IN ENVIRONMENTS

Consider two Hilbert space8iz describing an “environ-

The index;j is responsible for the possibility of having dif- ment” and spanned by vectof&), and M describing an
ferent parts of the system, which differently interact via the entity” and spanned by vectorge). The composite system
feedback. For the sake of simplicity, in this paper we restrict €nvironmenttentity” is represented by either a state vector
the analysis to only onkl and a singld:

|p:[H,f(p)] (4) |\P>:g:e \PE6|EIe>:E§;e \PE9|E>®|e> (10)

The only assumptions we make abduare that this is a or by a density matrix

standard operator function in the sense accepted in spectral

theory of self-adjoint operators, and that it should be linear

whenever there is no feedback. A nontrivial example satisfy- p= X peeee|E.NE" €. (11)
ing all the above requirements is an arbitrary polynomial EE'ee’

f(p)=ag+ap+---+a.p" ®) Assuming that all expectation values of random variables are
(p)=agtap+- - +anp". represented in terms of quantum averages, we can write

Il. RELATION TO REACTION-DIFFUSION MODELS (Ayy=(W|A| W) (12)

The typical reaction-diffusion models are of the form ;

[13,14 ©
X = oX+ @yf(X), ©) (A),=TrpA. (13

Of particular interest are averages representing certain statis-

o= 2 o i - o - . - -
wherew=AV*, andA andw, are, in general complex, ma- fjca| quantities associated only with the entities, i.e., of the
trices andX, f(X) are vectors. Particular cases of Eg) are  form

the Swift-Hohenberg\ —w, and Ginzburg-Landau models
[15-18.

To illustrate what kind of models we arrive at, consider
the quadratic nonlinearit§(p) = p? and the harmonic oscil- or
lator HamiltonianH==X,_,n|n){n|. In the simplest case of
a one-dimensional harmonic oscillator, our nonlinear von (18AY,=Tr p(18A)=Tr ¢ pehie. (15)

Neumann equatio'n'oz[H,pz] reads in position space,

<|®Ae>W:<\I'|I®Ae|\P>:TrePeAe (14)

The reduced density matrices are defined, respectively, by

0y ==t =y [ dapx.2p(zy). @

pe=Tr E|\P><\I’| = E \I’Ee\I’Ee’le><e,| (16)
So even the simplest cases lead to rather complicated Eee
integro-partial-differential  nonlinear equations_. The or
no-feedback  condition implies p(X,y)=¢(X) ¥(y),
fdzE(z) #(z)=1, and the equation can be separated vyield-
ing the Schrdinger equation pe=Tr EP=E2€{ peeee|€)(€’]. 17
e
[(X) = (= 5+ X2+ consh (). (8) In particular, forproduct statesi.e., those of the form
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|\If>=EEe YedelE.) =)@ |¢) (19

or

pP= Z QEE’O'ee’|Eie><E,ie,|:Q®0" (19
EE'e€

the reduced density matrices are, respectively,

pe=Tre| W )(¥|=|d)(¢| (20

and

pe=Trep=o. (21)

PHYSICAL REVIEW B57, 051926 (2003

IV. FEEDBACK WITH THE ENVIRONMENT

Typical systems discussed in the biophysics literature in-
volve nonlinearities given by nonpolynomial functioris
One often encounters Hill and other functions which are con-
tinuous approximations to step functions. A simple one-
dimensional reaction-diffusion model describing experiments
on regeneration and transplantation in hydra involves nonlin-
earities with positive and negative pow¢t$]. The environ-
ment is here modeled by two densities describing concentra-
tion of activator and inhibitor producing cells. Essential to
the model is the symmetry breaking of the two densities, a
fact accounting for the nonsymmetric development of hydra.
More refined model$20] do not need externally imposed
inhomogeneities but involve environments acting as active
chemicals. The aim of complicated feedback behaviors is to
account for the observed symmetry breaking of the develop-
ment of hydra without a need of putting the nonsymmetric

In such a case we say that the entity is uncorrelated with théléments by hand. . _ .
environment, i.e., probabilities of events associated with the A close quantum analog of biophysical dynamical sys-
entity are independent of all the events associated with thi€mS is a “general” nonlinear von Neumann equatieh

environment.

States of composite systems are of a product fiframd

[21,22. If fis to represent a feedback, the nonlinear effect
should disappear if the entity is uncorrelated with the envi-

only if entities are uncorrelated with environments. Interacyonment. Assuming that the whole system is represented by a
tions of entities with environments destroy the product formsstate vectof W), the lack of correlations implies thaw)

and introduce correlations.

=|¢)®|¢) andp.=|¢){¢|. Such a reduced density matrix

. . . . . H T 2 1 “ H
Reduced density matrices corresponding to nontrivial corsatisfiespz=pe. The condition “no correlations, no feed-

relations satisfy the condition

P Pe- (22)

back” is formally translated into

[H.f(p)1=[H,p] if p®=p. (26)

Any density matrixp is Hermitian and positive. From the Let us note that the above restriction means that
spectral theorem it follows that there exists a basis such that|¢)(¢| satisfies an equation equivalent to
p is diagonal. For example, any density matrix of an entity

can be written in some basis as

pe=§ pele)(el. (23)

Now consider a vector

[W)=2 Vpel¥e)ele), (24

where |V ) e Hg are any orthonormal vectors belonging to

i|¢)=H|¢). 27)

The latter is a general linear Schlinger equation. In the
absence of feedback the entity evolves according to the rules
of quantum mechanics, an assumption that is rather general
and weak.

This property has also another interpretation that is en-
tirely “classical.” Consider a system consisting Nfclassi-
cal harmonic oscillators with frequencies, . . . ,oy. De-
note byH the diagonal matrix diagd,, . . . ,on) and by|¢)
a column vector with entrieg,=q,+ip,. Then Eq.(27) is

the Hilbert space of the environment aje are the eigen- €quivalent to the system of classical equatioRs= wypx

vectors ofp.. Then

TrEI*1f><\If|=Ze pele)(el. (25)

In other words, for any density matrpe one can find a state

pr=— w gy - As a consequence, the description we propose
may be extended even to fully classical systems modeled by
ensembles of oscillators evolving linearly and independently
in the absence of a feedback.

Now, what are the restrictions imposed bhy Eq. (26)?
As we have said before, a general density matrix has a form

of the composite system guaranteeing that its reduced de
sity matrix is identical t,. In what follows we shall there-
fore assume that a given initigl is a result of correlations
of the entity with the environment. yfﬁa&pe then the corre-
lations are nontrivial.

ﬁfzzepe|e><e|, where p, are probabilities. The spectral
neorem implies that

f(pe>=§ f(pe)le)(el. (28)
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The conditionp2=p, implies thatpZ=p, whose solutions |

are 0 and 1. Therefore Eq26) is satisfied by anyf that —'<X|:;<X|f(P)- (35
fulfills f(0)=0 andf(1)=1. In practical computations, one
can relax Eq(26) by requiring only

z,le)=(p—pH)|e), (36)
[H.f(p)]~[H.p] if p*=p, (29)
o1
since having Eq(29) one can always reparametrize the time @)= ;f(P)|‘:">- (37)
variablet so that Eq(26) is satisfied. The polynomial men-
tioned in the Introduction belongs to this category. The method of solving Eq(4) is based on the following
Equation(4) possesses a number of interesting generajheorem establishing the Darboux covariance of the Lax pair
properties. For example, the quantities (32), (33) [25].
TheoremAssume that ¢|, (x|, and|¢) are solutions of
h=TrHf(p), (30 Egs.(32), (33), and(34)—(37) and( |, p, are defined by
c,=Tr(p", 31 v—
ey . (gl =(w 1+ﬁp), (38)
for all naturaln, are time independent is the Hamiltonian
function for the dynamics and, hence, plays the role of the
average energy of the entitthe feedback energy included pr=|1+ L”P)p 1+ V__“P) (39)
An analogous situation occurs in nonextensive statistics v ) '
whereh has an interpretation of internal enerf2,36. A
system with conservel is closed lo) x|
Conservation ot,, implies that eigenvalues @f are con- P=-—+. (40
served. The latter property means that there are certain fea- {xle)

tures of the system that occur with time independent prObThen
abilities. However, and this is very important, the features
themselves change in time in a way that is rather unusual in
physical systems and has many analogies in evolution of 21| =(¢al(p1—\H), (41

biological systems.

. 1
V. SOLITON MORPHOGENESIS —i(yy|= X<"”1|f(p1)’ (42

There exists a class of solutions of E4) which exhibits _
a kind of a three-regime switching effd@3—25: For times ip1=[H,f(p)]. (43
—oo<t<t, the dynamics looks as if there was not feedback,
then in the switching regimg <t<t, a “sudden” transition  Let us note that the theorem is valid even for non-Hermitian
occurs, driving the system intorsewstate that for times,  H, i.e., for open systems. However, in the present paper we
<t<® evolves again as if there was no feedback. Of coursgestrict the analysis to closédonservativg systems charac-
the feedback is present for all times, but is “visible” only terized by self-adjoinH. Systems whose average population
during the switching period. Formally, the effect is very does not change belong to this class.
similar to scattering between two asymptotically linear evo- One of the strategies of finding the “switching solutions
lutions (“self-scattering”. One can additionally complicate is the following. One begins with a seed solutigisuch that
the dynamics by introducing an external element that makete operator
the form of the feedback time dependent. We shall illustrate
the effect on explicit examples. A:=f(p)—ap, (44)
The general equatiof¥) belongs to the family of equa-
tions integrable by means of soliton methods. One beginshere[a,H]=[a,p]=0, satisfiegA,,H]=0 andA, is not

with its Lax representation a multiple of the identity. Now we can write
2 (| =(¢l(p—\H), (32 ip=[H,f(p)]=a[H,p] (45)
.1 and
—i(9l= (Wl (p). (33
p(t)=e"1aMtp(0)e'art, (46)

The construction requires two additional Lax pairs

Taking the Lax pairs witm=;and repeating the construc-
z,{x|=(x|(p—vH), (34) tion from Refs[23,24), we get
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pr(t)=e = p(0) + (v v)Fy(t) e e
X[IX(O)(x(0)] Hle =" elH, — (a7)
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and{x(0)| is an initial condition for the solution of the Lax
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VI. “SUDDEN” MUTATION OF POPULATION

s
AL
I

In our first example we consider the quadratic nonlinear-
ity f(p)=(1—h)p+hp? The parameterh controls the
strength of the feedback. However, for dmgnd any density
matrix satisfyingp?=p we find f(p)=p and the feedback x

vanishes. This is consistent with our assumption ﬁ%a*P FIG. 1. Probability density, ,=(x|p{|x) for the critical value
characterizes systems not interacting with an environment = (15+51)/(5+5% as a function of time anet for —40<t

We take the Hamiltoniati =X _,n|n)(n| which may rep- <40 (in arbitrary unit3. The three regimes are clearly visible. The
resent a system whose energy is proportional to the numberobability interpolates between asymptotic probabilities that are
of its elements. Solutions of the von Neumann equation aresonstant in time. The visible switchingmorphogenesjsbegins

in general, infinite dimensional, but in order to illustrate thearoundt=—30 and takes approximately 30 units of time. For later
morphogenesis we restrict the analysis to a finite dimensiortimes the probability density becomes indistinguishable from the
The lowest dimension where the effect occurs is 3. Therenrew asymptotic state.

fore, we select a subspace spanned by three subsequent vec-

tors [k), [k+1), and|k+2). We will discuss a family, pa-  can make a plot illustrating the time dependence of the prob-
rametrized by a¢eR, of self-switching solutions p,

5 JIUHC ability densityp , in position space as a function of time and
=3 n=0Pmn K+ M)(k+n| of Eq. (4). The solution is com- p,

pletely characterized by the matrix of time-dependent coef- The dynamics we encounter in this example is particularly
ficientsp,,. Here we only give the final result and postpone suggestive foh=h, (Fig. 1) and resembles a mutation of
a detailed derivation to Sec. VIIl where we analyze a generthe statistical ensemble described py The corresponding

alization involving a greater number of “different species.” probability appears static for, roughly; »<t<—40 and

The reader may check by a straightforward substitution thaghen also for 46:t<. Switching is “suddenly” triggered in
the matrix

a neighborhood of=0. Figure 2 shows the evolution of the
probability density at the origip, o as a function of time for

Poo Poi Po2 5 &) ()
P10 P11 Pr2|=—"F &) 5+5 &1 A
15+\5| —  _— A
P P2 P t t)y 5 s
20 P21 P22 (1) &(1) (48) m&g&@&‘\\v\\\\\;\\\%\\\\\\\\\\\\
with WM\ \4‘\\‘\\\\\ 7
¢ _(2+3i*\/§i)\/3+\5a ot Pr.o lgﬁ#gmw // A
= Betraze ) © RN \\\\\&g?ﬂ;;/// .44
2yt f a,2 )
£)=— 9e?"'+ (1+4+/5i) JRiat

3(e2"'+ a?)

is indeed a solution of the von Neumann equation.
;rlhE>e+ [\)/%r)ameters areo=1-(5+5)h/(15+5), y=2h/ FIG. 2. Probability densitp, , atx=0 as a function of time and

h for hg<h=<2.45. Forh>h, the switching around=0 takes
There exists a critical valuky,= (15+ y5)/(5+ \5) cor-

. . I ) place between two different asymptotic oscillating probability den-
responding tavy=0. Using the explicit position dependence sities. The switching is absent only fbr=0 (not shown where the

of the eigenstates of the harmonic oscillator Hamiltonian wedynamics is linear.
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different values oh. For h+ h, the probability density is an H=20,01+1®0,. (50)
oscillating function of time, but in the neighborhood bf

=0 one observes the “mutation” that occurs for amy¥ 0,  We will start with the non-normalized density matrix
the longer the transition period, the smalterDuration of

the switching process is of the ordehl/For h=0 the dy- 5+.7 0 0 0

namics is lineakno feedbackand there is no switching. The

example shows that there occurs a kind of uncertainty rela- (0)= E 0 5—\7 0 0
tion between the strength of the feedback and duration of the p 2 0 0 5+ \/E 0 '
switching: The smaller the feedback, the longer the switch-
ing period. 0 0 0 5-15

Let us note that the probability density shown in Fig. 1 (5D
has this particular shape since we have used the pOSitiOR}\?hich is written in such a basis that
space wave functions characteristic of a quantum one-
dimensional harmonic oscillatda Gaussian times Hermite 1 2 0 0
polynomialg. Had we chosen any other system that is isos-
pectral to a one-dimensional harmonic oscilldimrany sys- H— 2 1 0 0 (52
tem with equally spaced spectrum, say, a three-dimensional 1o o -1 2
harmonic oscillator we would have obtained a different 00 2 -1
shape of the probability density. Although different choices
of H imply different differential equations, their common The density matrix
feature is the effect of “mutation.”

p(t)y=exg —5iHt]p(0)exd 5iHt] (53

VII. COMPOSITE ENTITIES: BIRTH AND DEATH
OF AN ORGANISM is a solution of Eq(4) with f(p)=p2. Such ap(t) describes
simultaneously the dynamics of two noninteracting systems

In this example we consider arganism that is, a com- iatisfying the linear von Neumann equation

posite entity undergoing the feedback process as a whole.
simple model consists of a two-qubit system described by the

To understand why this happens, it is sufficient to note that
H=H;®1+1®H,. (49 the solution satisfies
The Hamiltonian does not contain an interaction term. How- [H,p2]=[H,50]=[5H,p]. (55)

ever, the two subentities forming the “organism” do not

evolve independently. They are coupled to each othefrhe environment does not trigger in this solution any switch-
through the feedback with the environment, i.e., through thgng, but only makes its evolution five times faster than in the
nonlinearity. As we shall see, they become asymptoticallyahsence of the feedback. The Darboux transformation, when

uncoulped at— *. In a “distant past” the system consists applied top(t), producegfor more details, cf. Ref23]) the
of uncorrelated subentities that, after a period of certain joingg|ytion

activity, become again uncorrelated in the future. An analogy

with “birth” and “death” is striking, and justifies the name p1(t)=exd —5iHt ] pj(t)exd 5iHt], (56)
“organism.”
To make the example concrete, assume that where

pint(t)

—13—37—/15-i\105 —7i+3\7—-315+i/105

— 7 tanh 0
5—7tanh 2 8 cosh 2 8 cosh2
i 5+ Tianna 5 +/7—/15-i105 V7+15
. 8 cosh 2 2 cosh2
_E . B i —15 + — -+ i
13— 37— \15+i\105 —15+\7—15+i/105 5+ 15tanh 2 0
8 cosh2 8 cosh2
i+37-3/15-i105 V7+415 0 5-V15tanh2
8 cosh2 2 cosh2

(57)
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Now the switching between the two asymptotic evolutions is entropy
triggered in the neighborhood ¢=0. —mmmmmmmommmoel 0 &6T LemmTTTTTIT I
If we look at the subentities forming the organism, we J¥
notice that they do not evolve independently. The easiest way 6\\ csl /
of seeing this is to compute the reduced density matrices o v !
the two subentities. Here we write explicitly the eigenvalues 0 \‘67_ :
of the reduced density matrices. Both subsystems are tw I‘. !
dimensional, so there are two eigenvalues for each reduce 0 kel |
density matrix. They read ‘.‘ H
0.65}
1)- 2 \/E_ﬁt ha (particl 58 ]
=t — 1 i
p+(1)=5*——5—tanh2 (particle ),  (58) 0. 6hlf
1 V26+2105 =3 2 2 17"
p-(2)=—-*x=——— (particle 2. (59
2 40cosh2 FIG. 3. Life and death of the two-qubit organism: the von Neu-
) mann entropies of particles (solid curve and 2(dashed curve
The asymptotics are The times where the particles are practically independent corre-
spond to the flat parts of the plots.
5-7 0 0 0 P P P
1 0 5+.7 0 0 p1(1) is positive for anyt and, hencep,(t) is in this sense
Pint(—*) = 2 0 0 5- 15 0 ' separabléhas “zero entanglement’ It is well kno‘\‘/vn, how-
ever, that “zero entanglement” does not mean “no quantum
0 0 0 5+15 correlations” in the system. The so called three-particle

(60) Greenberger-Horne-Zeilinger stdi2g] is fully entangled at
the three-particle level in spite of the fact that all its two-

5+17 0 0 0 particle subsystems are described by separable density ma-
1 0 5— \/7 0 0 trices.
pint(+2)= 5
2
0 0 5+ \/1—5 0 VIIl. MODEL WITH SEVERAL SPECIES
0 0 0 5-15 .
The models we have considered so far corresponded to a

Hilbert space with basis vectofs). The only characteriza-
tion of a state was in terms of the quantum numbehat

and therefore the dynamics represents asymptotically tweould be regarded as the number of elements of a given
noninteracting subentities. It is also interesting that e population. Now we want to extend the description to the
asymptotics isp;(t)~p(t). At large times an “organism” sjtuation where we have a population consisting of several

=p(0), (61)

that “dies” becomes practically indistinguishable from the species characterized by numbaers, ... ny. The basis
one that never “lived.” vectors are

The “life” of the organism is the period of time when the
two subentities exhibit certain joint activity. Computing the INY=Inq, ....n=[n)@---@|ny) (62)

von Neumann entropies of reduced density matrices of the

two subentities, we can introduce a quantitative measure afnd the Hamiltonian
this activity. The entropies of the two particles are shown in
Fig. 3. The organism lives several units of time. Similar are
the scales of time when the off-diagonal matrix elements of
pint(t) become non-negligible. It should be stressed that the
entropy characterizing the entire organism is time indepen-
dent[since eigenvalues of solutions of E¢,) are constants :2 E,[n)(n|. (64)
of motion for all f]. mo "

Although it is clear that the “organism” behaves during
the evolution as an indivisible entity, one should not confuseThe Hamiltonian has an equally spaced spectrum and is for-

this indivisibility with the so-called nonseparability dis- mally very similar to those we have encountered in the pre-

cussed in quantum information theory. The organism we convious sections. The difference is that now the energy eigen-
sider in the example is a two-qubit system and therefore onstates are highly degenerated, a property that is very useful
can check the separability @f;(t) by means of the Peres- from the perspective of constructing multiparameter and

Horodecki partial transposition criterid@6,27]: A two qubit  higher-dimensional self-switching solutions.

density matrixp is separable if and only if its partial trans- For simplicity consider two specied& 2), the quadratic

position is positive. It turns out that partial transposition of nonlinearity

H=> (ng+--- +ny)[ng, . .ong){ng, .. .ny| (63
nj
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f(p)=(1=h)p+hp?, [pj(0)=iH I} =2]¢;). (72

and take some three energy eigenvaligsE, ; ., Exiom- We find that the two solutions
For each energy taker 1 vectors, which will be denoted by

op=lki.J) 69 ety AMENAtAbI 0 Lo a9
Sy = —J’J y 3 = — i - i)y
, K 2yazra 2
|1)=Ik+m—j,j), (66) 2
. lef?)=]1;) (74)
2))=|k+2m—],j), (67) N _
correspond to the sanj@ndependent eigenvalue
j=0,1,...]<k. We start with the unnormalized density
matrix a+ \/az+—4(b_ m?) _
| z= 5 + (k+m)i, (75)
p(o):;o pi(0), ®8  and therefore
where .
[p(0)—iH][¢)=2|¢), (76)
a .
p;(0)= §(|Oj><01|+|2j>(2j|) with the samez for any
[
N, Va2 _
a+ a +4(b m’) 1)1~ ~——5— |‘P>_]_20(aj|991‘(1)>+,3j|¢1(2)>)- (77)
X(|2j><0j|+|oj><2j|)- (690  The self-switching solution can thus be constructed by
means of ¢) and reads
Posmwty of p;(0) restricts the parameters as follows: 0
<4m?<a’+4b<a?. The operator py(t)y=e 'FTNE=DIHY L Q)+ 2iF (1) “te 4l
| X[|@)( | Hle™ e}l xham 1A, (78)
Aa=p(0)?~ap(0)=bT-m*2 [1)(1] (70 it
~ ~ |
commutes withH. We denote byl andH the restrictions of _ . _ A—2hbt 12
the identity | and H to the 3(+1)-dimensional subspace a(D)=(elexp(—2hA,t)|p) =€ ZO (o]
spanned by vector&5)—(67). We will write H=3!_,H 5 -
where i + g2hm t|,8j|2):e 2hbt(|a|2+ethzt|,B|2)
2 (79
Hi:nzo (knm)[n;)(m]. (7D probabilities analogous to Fig. 1 are foundaifand h are
tuned in a way that eliminates the oscillating part
Consider the eigenvalue problem g [A+h@-DIHt o forh=1/(1—a). In this case

|
. 2 _ _ 2. _ —_— —_ 2. _
pa(1)=p(0)+2i(|a|2+e*™ V| 812"t X [(aj]¢V)+ Be™ V2 o)) (e (@l + By ™ A o{P]), H].
j.j'=0
(80)

The vectors . a,( 2im+ @A
) : V2 Ja?+4b
|©(1) = aj] o{V) + Bie™ V1D o) =| (1)) @),
(81) +|k+2m—j>)+ﬁjemz“(la)|k+m—j)
where (82
051926-8
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are orthogonal for different DenotingH=H;®1+1®H,, 1 +5
one can easily compute the reduced density matrix of the |bo(t))= 3|~ —3 |1)+]3)
first species,

+elto™ 0412y (94)

I ey _ 1 ; 2. a2mit/(1-a)| p|2) -1 1 2i+\/§
t)=T t)=p'(0)+2 + -
p1()=Tr 2p1(1)=p'(0) +2i(|a|*+e 1B1%) |¢’1(t)>:§(_T|O>+|2> +elt t)/4|:|_>_ (95)
[
X ]240 |¢i(t)><¢1(t)|’Hl ) (83) Writing the restriction ofH to the six-dimensional subspace
as

The entire information about the dynamics of the first species

is encoded i} (t). Changes of properties of the species are 10000
given by the matrix elements 01 0 0 O O
(npy(t)n"y=(n|p!(0)|n")+2i(n"—n) 002000 ©6)
, 000200
2, (nlgi(0)(i(t)In’) 000030
o (84) 000O0O0 3

|a|2+ezm2t/(1—a)|[3|2

) ) ) ) we can represent the two-species density matkixn the
An immediate conclusion from the above formula is that forym

n=n’ the expression is time independent. It follows that the

number of_elements of the ensemble dogs not change during 5 2-i5 3 2-i5
the evolution. What changes are certain properties of the 51 & — -1+ 14
ensemble. 3 2 3
~ 2+i\5 _ 5+ \/El T
A. Example: k=m=1, j=0,1,a=5, b=—4 p1= 3 3 ’
The two-species states in the subspace in question are 3 2+i\5 i 5 L
- =1+ —i -
100)=11.0, (85) 273 2
1,)=12,0 86 o7
10)=12.0), (86) wherel is the 2X 2 unit matrix, T denotes transposition, and
|20>= |3,0>, (87 el gli/d  gtol4
02)=10.2), (89) M= G gy que | e g0 9
|1,)=]1,2), (89 ol2 (1 1) .
t)y=————— . 99
12,)=2,1). (90) ¢ el24 glo24 a2\ 1 1
The two-species initial seed density matrix is given by ?h”e can verfy by a straightforward calculation that
it
5 5+45
po(0)=7(1,0(1,0+|3,0(3,0) + 12,0(2,0 .5 1
2 2 ip1=7[H.p1]— Z[H.pil. (100
3
B §(|3,0><1,q+|1,0)(3,Q), (01 To illustrate the time variation of statistical quantities asso-
ciated with the two-species system it is sufficient to visualize
5 5+5 the behavior of matrix elements pf. There are only three
p1(0)=§(|0,1><0,]J +12,1%(2,1) + 5 |1,1)(1,1 types of functions occurring ip;:
3 t/2
—§(|2:1><0.]J+|0,1><2,]J). (92 F(t):m, (109
p(0)=po(0)+p1(0). (93 alt+t)/4
Fol)=—o—% 7" (102
Assume thatvg=a;=1/\/2, Bo=e'?* B;=e'" Then 0 el24 elo24 gla’?
051926-9


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

MAREK CZACHOR et al.

olt+t)/a

Fi(t) (103

ol2 4 glol2 1 gtif2’

The two parameterd, andt;, control two types of three-
regime behaviors op,. The functionF is responsible for
asymptotic properties gb, (via ). FunctionsF, and F;
determine properties of the switching regirhea ¢). For
to<<t; one findsFy(t)~0 for all t and the switching is con-
trolled by F(t) and F4(t); the “moment” of switching is
shifted proportionally tat;. Forty>t; one findsF,(t)~0
for all t and the switching is controlled biy(t) andFq(t);

5 2—-i\5
2 3 1
2+i\5 5
\/—Fl 5+£
. 3 2
P 3 2+iy5_ 2+i\5
_—+ FO_IFl
2 3 3
3 2+i5
0 ——+ I\/_F
2 3
15+ 5 2—i5_
> 3 Fi+iFg
= 10
Prmlo4i B 15+ 5 (1079
—3 1o 2

Of course, all the density matrices are not normalized so that

averages must be computed according t0A)
=Tr Ap,/Tr p4, etc.(note that Trp, is time independent

IX. MORPHOGENESIS OF COMPLEMENTARITY

According to the sufficiency of subsystem correlations

(SSQ [30,3]] a density matrixp is uniquely determined by

correlations between all the possible propositions associat

with a given system. Each matrix element ofpacan be

given an interpretation in terms of probabilities associate
with some proposition. In the Hilbert space language a

PHYSICAL REVIEW E 67, 051926 (2003

the “moment” of switching does not depend dn and is
determined byt,. Therefore, the two types of switches are
characterized by vanishing of those matrix elementg of
which contain eitheF, or F.

The asymptotic behavior of the system is given by

Fo(£%)=F(*»)=F(-2)=0, (104

F(+%)=1. (105

The reduced density matrices of single species are

3 2-i\5
—§+ 3 F 0
2_3—'£Fo+iF1 —§+2_3|\/§F
5+\/_§ iFo | 0
2
5
2

same question has different answers within a single question-
naire. An ideal questionnaire involves all the possible ques-
tions asked in all the possible orders. In the Hilbert space
formalism, where the questions are represented by projec-
tors, an ideal questionnaire encodes all the possible correla-
tions and thus, via the SSC theorem, is equivalent to a den-
ity matrix.

It is also known that there exist simple examples of sys-
tems whose logic is non-Boolean, but which do not allow a
Hilbert space formulatiof29]. The density matrix language
will probably not suffice here and one has to admit a possi-
bility of other state spaces and other nonlinear evolutions.
The richness of available structures is immense.

Let us finally give examples of propositions whose aver-
ages(i.e., probabilities change in time according to selected
atrix elements of the self-switching solutions. The function

(J:(t) shown in Fig. 4 is associated with the proposition

proposition is a projector, i.e., an operator with eigenvalues 1 1010

and O(logical “true” and “false”). Propositions that can be 1/0 0 0 O

asked simultaneously are represented by commuting projec- P=_ (108
" ) 211 0 1 0

tors. Proposition®,, P,, which do not commute, are re-

lated by an uncertainty relation: The more is known about 0 00O

P,, the less is known abowR,, and vice versa.

It is obvious that the above structures do not have to be ) ] )

associated with quantum systems. Just to give an exampleéorresponding to the first species as follows:

many psychological tests are based on questionnaires that

involve the same question aske_d many times in diff_erent con- Tr Ppll(t) 19+5+ 8F(1)/3

texts. The questions commute if the answer to a given ques- p(t)= =— . (109

15+ 5

. . . . . . |
tion is always the same. However, in typical situations the Tr pi(t) 4

051926-10
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200100

FIG. 4. F(t) as a function ot andt, for ty=150.

Here p(t) is the probability of the answer “true” associated
with P. Analogously,F4(t) shown at Fig. 5 is associated

with the proposition
1 1 00
1/1 1 00
Plfi 0 0 0 O (110
0 0 0O
by means of
Tr Pypl(t) 1 15+5+8F,(t)/3
p1(t)= =— . (111

Tr plty 4 15+ 5
The evolution of the probabilities resembles the well known
evolutions typically modeled by Hill functiond 2] in the so
called sigmoidal response modé&2-35,37. Square devia-

tions associated with the two propositions satisfy the uncer:

tainty relation

PHYSICAL REVIEW B57, 051926 (2003

L AL AT
PJPZLL 2 LA AN
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el

T LA 2
N\

20

FIG. 6. Morphogenesis of complementarity. The right-hand side
of the uncertainty relation for standard deviatigdB andAP; as a
function of timet and the parametey (t,=0). Proposition$> and
P, are the more complementary, the greater the value of this func-
tion.

APAP !
27
=2

Tr[P,Py]pi(1)
Tr pi(t)
\/g(et/2+ e(l+10)/4)_(3+ \/g)e(tﬂl)m

| 12015+ {B)(e2+ €'+ g12)

(112

For any fixedty, t;, the right-hand side of the inequality
vanishes fort— —o and approache§5/[12(15+ \/5)] for

t— +o0. Figure 6 shows this function far,=0. The two
propositions that were not complementary in the past evolve
into propositions satisfying an uncertainty relation.

In application to psychology, a density matrix may repre-
sent an ideal questionnaire and, hence, a state of personality
of a given individual. The morphogenesis we have discussed
is a simple model of development of two complementary
concepts. The model is simplified and perhaps too far
fetched. However, philosophically this is not very far from
the approaches of Thofi] and particularly of Zeemal88]
in their catastrophe theory models of the brain. More inter-
esting in this context may be infinite dimensional cases
whose preliminary analysis in terms of Darboux transforma-
tions for arbitraryf(p) can be found in Ref.25].

: X (VA
F, ‘ 'lm'."""I’"’ll"l“""’i’é": 250 X. DISCUSSION
i’"g’»ﬁ.‘b‘.’mt‘.b}u&%,Wo,‘., The model we have described satisfies the assumptions
R N XN ANV 0 0 : : -
At e e e et detet imposed by Thom on aystem of forms in evolutiofChap.

100 £, 1.2.A of Ref.[1]). The model is continuous and the morpho-
genesis is a result of soliton dynamics. In this respect, the
construction is analogous to nonlinear sigmoidal response
models used in biochemistf$7]. What makes our construc-

200100 tion essentially different from the models one finds in the
literature is the role of noncommutativity of the system of
FIG. 5. F4(t) as a function ot andt; for ty=150. propositions.
051926-11
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Noncommutative propositions are related by uncertaintytion) of morphogenesis does depend on initial conditions or
principles and are typical of systems that cannot, without arthe form of nonlinearity. However, the modifications do not
essential destruction, be separated into independent parisfluence the asymptotics, which is the qualitative element of
The examples can be taken not only from quantum physicghe dynamics. For example, an organism that was “born” has
but also from sociologycommunitieg, psychology(person-  to “die” but when and how will this occur depends on many
alities), or biology (organisms In all these cases the dynam- details that are qualitatively irrelevant. .
ics of a system consists of two parts: One generated by in- Instead of conclusions, let us quote Thom'’s final remarks

ternal interactions, and the other corresponding to coupling0m his early work on topological models in biologg9].
with environment. We have considered only the simplest  Fractically any morphology can be given such a dynami-
case where the internal dynamics is givanpriori by a cal interpretation, and the choice between possible models

Hamiltonian of a harmonic oscillator type, and different partsmay be done, frequently, only by qualitative appreciation and

of an organismcommunity, etg. are coupled to each other ma:tr;en}atliil sense ?I_eltehgancebar:d economy. Hlere '\tﬁe do
only via the environment. not deal with a scientific theory, but more precisely with a

The coupling with environment leads to a feedback andmethOd t?rld :h'lstl metholii_ do‘;; nott Ifead dtol ?/?/ﬁmtﬂc tech-
hence, nonlinear evolution. The systems we consider ar: |qu.est,h l: , Stric %Spel? mg, ?r ?. m? ebs'ld a rrr:ay d
conservative, but without difficulties can be generalized to €, In that case, the ultimate motivation to butid such moad-

.. . A o 2 H H . i
explicitly time-dependent environments or non—Hermltlanels' They satlsfy,_l be_I!eve, avery fundamentql epistermnologi
Hamiltonians. cal need . ... Ikcientific progress is to be achieved by other

We model propositions by projectors on subspaces of Ineans than pure chance and lucky guess, it reIies'necessarin
Hilbert space. States of the systems are represented by all t A aqualitative understandingf the process studied. Our

possible correlations between all the possible, even nonco tynlatmlcal scrt1emt<ats,h d proyldlta U.S.W't? a very pﬁwlerfgl
muting, propositions. The choice of the Hilbert space lan-'00! 10 reconstruct the dynamical origin of any morphologi-

guage leads us therefore to a density matrix representation 813" process. They will help us, | hope, to a better understand-

states, and the dynamics is given in terms of nonlinear volf'9 of the structure of many phenomena of animate and in-

Neumann equations. The formalism allows to consider mor@Nimate nature, and also, | believe, of our own structure.

phogenesis of a completely new type, for example, a devel- ACKNOWLEDGMENTS
opment of complementary properties.
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