W pracy udowodniono twierdzenie o istnieniu rozwiązań i ich ciągłej zależności od warunków początkowo brzegowych. Do przekształcenia zagadnienia oryginalnego w układ równań całkowo funkcyjnych typu Volterry użyto metody bicharakterystyk. Istnienie rozwiązań udowodnione jest metodą kolejnych przybliżeń, przy użyciu twierdzeń o nierównościach całkowych. Rozwiązania klasyczne układów równań całkowo funkcyjnych prowadzą do rozwiązań uogólnionych zagadnienia wyjściowego. Precyzując dane operatory, można otrzymać z rozważanego modelu równania z odchylonym argumentem oraz równania różniczkowo całkowe.
Autorzy
Informacje dodatkowe
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Język
- angielski
- Rok wydania
- 2006