Popularność i rosnące możliwości sztucznych sieci neuronowych przyczyniają się do coraz to szerszego zastosowania przemysłowego. Szybki przyrost mocy elektrowni wiatrowych w krajowej sieci elektroenergetycznej (KSE) stawia trudne zadanie bilansowania mocy przed krajowymi Operatorami Sieci Dystrybucyjnych (OSD) i Operatorem Sieci Przesyłowej (OSP). Prawnym obowiązkiem prognozowania mocy farmy wiatrowej obarczony jest właściciel. Ze względu na trudność trafnych prognoz z 24 godzinnym horyzontem, inwestorzy przekazują tę powinność OSD. Celem artykułu jest porównanie algorytmów uczenia sieci neuronowej o topologii perceptronu jedno- i wielowarstwowego oraz rekurencyjnego Elmana, wykorzystanej do zagadnienia predykcji mocy farmy wiatrowej.
Autorzy
- dr hab. inż. Elżbieta Bogalecka link otwiera się w nowej karcie ,
- Tomasz Rubanowicz
Informacje dodatkowe
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Język
- polski
- Rok wydania
- 2010
Źródło danych: MOSTWiedzy.pl - publikacja "Neuronowy model mocy farmy wiatrowej" link otwiera się w nowej karcie