Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

A memory efficient and fast sparse matrix vector product on a Gpu

This paper proposes a new sparse matrix storage format which allows an efficient implementation of a sparse matrix vector product on a Fermi Graphics Processing Unit (GPU). Unlike previous formats it has both low memory footprint and good throughput. The new format, which we call Sliced ELLR-T has been designed specifically for accelerating the iterative solution of a large sparse and complex-valued system of linear equations arising in computational electromagnetics. Numerical tests have shown that the performance of the new implementation reaches 69 GFLOPS in complex single precision arithmetic. Compared to the optimized six core Central Processing Unit (CPU) (Intel Xeon 5680) this performance implies a speedup by a factor of six. In terms of speed the new format is as fast as the best format published so far and at the same time it does not introduce redundant zero elements which have to be stored to ensure fast memory access. Compared to previously published solutions, significantly larger problems can be handled using low cost commodity GPUs with limited amount of on-board memory.

Autorzy

Informacje dodatkowe

Kategoria
Publikacja w czasopiśmie
Typ
artykuł w czasopiśmie wyróżnionym w JCR
Język
angielski
Rok wydania
2011

Źródło danych: MOSTWiedzy.pl - publikacja "A memory efficient and fast sparse matrix vector product on a Gpu" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie