Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Kernel PCA in Application to Leakage Detection in Drinking Water Distribution System

Monitoring plays an important role in advanced control of complex dynamic systems. Precise information about system's behaviour, including faults detection, enables efficient control. Proposed method- Kernel Principal Component Analysis (KPCA), a representative of machine learning, skilfully takes full advantage of the well known PCA method and extends its application to nonlinear case. The paper explains the general idea of KPCA and provides an example of how to utilize it for fault detection problem. The efficiency of described method is presented for application of leakage detection in drinking water systems, representing a complex and distributed dynamic system of a large scale. Simulations for Chojnice town show promising results of detecting and even localising the leakages, using limited number of measuring points

Autorzy

Informacje dodatkowe

Kategoria
Aktywność konferencyjna
Typ
materiały konferencyjne indeksowane w Web of Science
Język
angielski
Rok wydania
2011

Źródło danych: MOSTWiedzy.pl - publikacja "Kernel PCA in Application to Leakage Detection in Drinking Water Distribution System" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie