A concept and practical implementation of a crowd management system which acquires input data by the set of monitoring cameras is presented. Two leading threads are considered. First concerns the crowd behavior analysis. Second thread focuses on detection of a hold-ups in the doorway. The optical flow combined with soft computing methods (neural network) is employed to evaluate the type of crowd behavior, and fuzzy logic aids detection of the hold-ups. The experiments with the behavior classification algorithm were performed employing prepared repository of typical and untypical behavior recordings. The effectiveness of the analysis was assessed by comparing algorithmic processing results to a set of prepared reference data, which provides a description of behavior type occurring in each video frame. Application of parallel image processing and influence of parallelization on achieved performance is explained. Apart from the crowd management the behavior analysis may be used in automatic surveillance system deployed in a city area.
Autorzy
- dr inż. Maciej Szczodrak link otwiera się w nowej karcie ,
- dr hab. inż. Józef Kotus link otwiera się w nowej karcie ,
- mgr Krzysztof Kopaczewski link otwiera się w nowej karcie ,
- mgr inż. Kuba Łopatka link otwiera się w nowej karcie ,
- prof. dr hab. inż. Andrzej Czyżewski link otwiera się w nowej karcie ,
- prof. dr hab. inż. Henryk Krawczyk link otwiera się w nowej karcie
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1109/dexa.2011.16
- Kategoria
- Aktywność konferencyjna
- Typ
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język
- angielski
- Rok wydania
- 2011