A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)D is independent. The double outer-independent domination number of a graph G, denoted by gamma_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove that for every nontrivial tree T of order n, with l leaves and s support vertices we have gamma_d^{oi}(T) >= (2n+l-s+2)/3, and we characterize the trees attaining this lower bound. We also give a constructive characterization of trees T such that gamma_d^{oi}(T) = (2n+2)/3.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1515/dema-2013-0358
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Język
- angielski
- Rok wydania
- 2012
Źródło danych: MOSTWiedzy.pl - publikacja "A lower bound on the double outer-independent domination number of a tree" link otwiera się w nowej karcie