Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna

In this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface approximation (RSA) models constructed from sampled coarse-discretization EM simulation data. The RSA model is utilized to determine the Pareto optimal set of the best possible trade-offs between conflicting objectives. In order toalleviate the difficulties related to a large number of designable parameters, the RSA model is constructed in the initially reduced design space, where the lower/upper parameter bounds are estimated by solving appropriate single-objective problems resulting in identifying the extreme point of the Pareto set. The main optimization engine is multi-objective evolutionary algorithm (MOEA). Selected designs are subsequently refined using space mapping technique to obtain the final representation of the Pareto front at the high-fidelity EM antenna model level. The total design cost corresponds to less than two hundred of EM antenna simulations.

Autorzy