Dyfuzyjne spalanie turbulentne jest najpowszechniej występującym w zastosowa-niach przemysłowych rodzajem tego procesu. Jednak jego dokładny opis wciąż sprawia trudności i obserwuje się rozwój konkurujących modeli implementowanych w podejściu RANS (Reynolds Averaged Navier Stokes), a współcześnie coraz częściej także w metodzie dużych wirów (LES) o czym świadczą liczne publikacje [13, 16, 18, 21]. W niniejszej pracy przedstawiono wyniki numerycznych symulacji RANS dyfuzyjnego spalania turbulentnego metanu w oparciu o płomień Sandia D. Zastosowano podejście do spalania przy użyciu stopnia zmieszania i chemicznej równowagi z zakładaniem funkcji gęstości prawdopodobieństwa (PDF), model flamelet bazujący na stopniu zmieszania oraz koncepcję dyssypacji wirów (ang. Eddy Dissipation Concept). Porównano powyższe modele przy wykorzystaniu komercyjnego oprogramowania obliczeniowego ANSYS Fluent oraz referencyjnie dla otwartego oprogramowania OpenFOAM (model EDC), bazujących na metodze objętości skończonych. Wyniki porównano z danymi eksperymentalnymi [5]. Dla wszystkich wyników zaobserwowano przesunięcie maksimów temperatury w kierunku wlotu strugi w stosunku do danych eksperymentalnych, co świadczy o wcześniejszej konsumpcji paliwa i wynika z założenia zbyt szybkich reakcji chemicznych. Nie zaobserwowano wyraźnej poprawy wyników dla modelu flamlet w stosunku do modelu z zakładaną funkcją PDF, mimo uwzględnienia dokładniejszego mechanizmu chemicznego. Wyniki bazujące na koncepcji dyssypacji wirów miejscami najlepiej odwzorowują tendencję rozkładu skalarów, jednak metoda ta jest znacznie droższa obliczeniowo.
Autorzy
- Michał Lewandowski link otwiera się w nowej karcie ,
- Jacek Pozorski
Informacje dodatkowe
- Kategoria
- Publikacja monograficzna
- Typ
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
- Język
- polski
- Rok wydania
- 2014