Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową

Podstawowym problemem podczas projektowania systemu autodiagnostyki chorób serca, bazującego na analizie sygnału fonokardiograficznego (PCG), jest konieczność zapewnienia, niezależnie od warunków zewnętrznych, sygnału o wysokiej jakości. W artykule, bazując na zdolności Sztucznej Sieci Neuronowej (SSN) do predykcji sygnałów periodycznych oraz quasi-periodycznych, został opracowany adaptacyjny algorytm filtracji dźwięków serca. Wykazano, że poprzez zastosowanie jednokierunkowej, dwuwarstwowej sieci neuronowej ze 100 neuronami w warstwie wejściowej oraz odpowiednio z 25 i 10 neuronami w warstwach ukrytych oraz poprzez zastosowanie algorytmu Silva-Almeida podczas uczenia sieci metodą wstecznej propagacji wraz z sigmoidalną funkcją pobudzenia tangensa hiperbolicznego, możliwa jest efektywna filtracja sygnału PCG. Opracowany algorytm został przetestowany zarówno dla dźwięków serca zarejestrowanych u osoby zdrowej (S1-S4) jak dla dźwięków serca osób posiadających zmiany patologiczne (normalne rozszczepienie tonu S1, klik wyrzutowy oraz dudnienie rozkurczowe).

Autorzy

Informacje dodatkowe

Kategoria
Publikacja w czasopiśmie
Typ
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Język
polski
Rok wydania
2014

Źródło danych: MOSTWiedzy.pl - publikacja "Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie