In this paper we study the problem of interval incidence coloring of bipartite graphs. We show the upper bound for interval incidence coloring number (χii) for bipartite graphs χii≤2Δ, and we prove that χii=2Δ holds for regular bipartite graphs. We solve this problem for subcubic bipartite graphs, i.e. we fully characterize the subcubic graphs that admit 4, 5 or 6 coloring, and we construct a linear time exact algorithm for subcubic bipartite graphs. We also study the problem for bipartite graphs with Δ=4 and we show that 5-coloring is easy and 6-coloring is hard (NP-complete). Moreover, we construct an O(nΔ^3.5logΔ) time optimal algorithm for trees.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1016/j.dam.2013.10.007
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuł w czasopiśmie wyróżnionym w JCR
- Język
- angielski
- Rok wydania
- 2014
Źródło danych: MOSTWiedzy.pl - publikacja "Interval incidence coloring of bipartite graphs" link otwiera się w nowej karcie