W pracy dowodzimy twierdzenia, które wiąże założenie dokładności skal ekwiwalentności (ESE) z symetrycznym czynnikiem dominacji stochastycznej pierwszego rzędu. Dokładniej, niech X i Y będą rozkładami wydatków, odpowiednio, analizowanej grupy gospodarstw domowych i grupy gospodarstw odniesienia. Niech Z oznacza rozkład X skorygowany za pomocą pewnej skali ekwiwalentności. Jeśli spełnione jest założenie ESE, to Z jest stochastyczne indyferentne z X. /Jednakże indyferencja stochastyczna (SI) nie implikuje ESE. Oznacza to, że SI jest założeniem słabszym niż ESE. Proponujemy obliczać skale ekwiwalentności na podstawie kryterium SI, gdy ESE nie jest spełnione.
Autorzy
Informacje dodatkowe
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Język
- polski
- Rok wydania
- 2014
Źródło danych: MOSTWiedzy.pl - publikacja "Dokładność skal ekwiwalentności a indyferencja stochastyczna" link otwiera się w nowej karcie