Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Investigation of low-temperature cracking in newly constructed high-modulus asphalt concrete base course of a motorway pavement

The paper presents the issue of low-temperature transverse cracks which have developed in newly constructed base courses made of high-modulus asphalt concrete mix (HMAC). Numerous transverse cracks developed in the analysed HMAC base during the winter season before the pavement was actually completed, both at the transverse joint locations and in the areas between them. This had not happened so far on such a scale during road construction projects in Poland. The research included both field examination and laboratory testing of high-modulus asphalt concrete used for construction of the base course of the A1 motorway pavement, followed by computational analysis to investigate the causes and mechanism of the analysed pavement distress. The first part of this paper describes the pavement structure, gives the main requirements applicable to HMAC, and presents the results of the cracking survey, visual assessment and laboratory tests carried out on cores cut from the analysed pavement. Later in the article, the causes of cracking are analysed, taking into account the temperature of air and pavement, performance grade assessment of the bitumen used in the works, homogeneity of the constructed layer and calculated thermal stresses induced in HMAC layers. The examinations and analyses allowed to conclude that the main causes of cracking included too stiff mix, taking into account the climate of Poland, deviations from the pre-defined installation practice during the construction of the base course and leaving the HMAC surface unprotected by the overlying layers: binder and wearing courses during winter. Finally, compliance with the best construction practice during placement of HMAC mixes and use of softer or polymer-modified bitumens are indicated as being critical to avoiding distress of HMAC pavement courses.

Autorzy