A simple and flexible algorithm for finding zeros of a complex function is presented. An arbitrary-shaped search region can be considered and a very wide class of functions can be analyzed, including those containing singular points or even branch cuts. The proposed technique is based on sampling the function at nodes of a regular or a self-adaptive mesh and on the analysis of the function sign changes. As a result, a set of candidate points is created, where the signs of the real and imaginary parts of the function change simultaneously. To verify and refine the results, an iterative algorithm is applied. The validity of the presented technique is supported by the results obtained in numerical tests involving three different types of functions.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1145/2699457
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuł w czasopiśmie wyróżnionym w JCR
- Język
- angielski
- Rok wydania
- 2015
Źródło danych: MOSTWiedzy.pl - publikacja "Complex Root Finding Algorithm Based on Delaunay Triangulation" link otwiera się w nowej karcie