The presented research aims at modeling acoustical wave propagation phenomena by applying rough set theory in a novel manner. In a typical listening environment sound intensity is determined by numerous factors: a distance from a sound source, signal levels and frequencies, obstacles’ locations and sizes. Contrarily, a free-field is characterized by direct, unimpeded propagation of the acoustical waves. The proposed approach is focused on processing sound field measurements performed in an anechoic chamber, collected by a dedicated acoustic probe, comprising thousands of datapoints for six signal frequencies, with and without the presence of a dummy head in a free-field. The rough set theory is applied for modeling the influence of an obstacle that a dummy head creates in a free-field and the effects of the head acoustic interferences, shading and diffraction. A data pre-processing method is proposed, involving coordinate system transformation, data discretization, and classification. Four rule sets are acquired, and achieved accuracy and coverage are assessed. Final results allow simplification of the model and new method for visualization.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-319-19941-2_40
- Kategoria
- Aktywność konferencyjna
- Typ
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język
- angielski
- Rok wydania
- 2015