A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove that for every nontrivial tree T of order n, with l leaves and s support vertices we have γ_d^{oi}(T) ≤ (2n+l+s)/3, and we characterize the trees attaining this upper bound.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1515/gmj-2014-0057
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuł w czasopiśmie wyróżnionym w JCR
- Język
- angielski
- Rok wydania
- 2015