Sample preparation has been recognized as a critical step of the analytical process, being even considered as the bottleneck of the overall process. Enrichment of target compounds, transfer of the analytes into a solvent compatible with the analytical instrumentation, minimization of potential interferences, and efficient sample clean-up, are among the main aims of sample preparation techniques. In this regard, liquid-liquid extraction and solid-phase extraction have been conventionally employed prior to the determination of relevant compounds in a variety of samples. In spite of their suitable performance, these classical techniques do not fulfill several of the challenges in analytical chemistry, including miniaturization, portability, and environmental sustainability. Furthermore, the necessity to determine relevant compounds at very low concentrations in matrices of different complexity, especially when dealing with reduced sample volumes, made the improvement of sample preparation techniques being of paramount importance. The inception of solid-phase microextraction (SPME) involved a huge advance in this sense. SPME was firstly introduced by prof. Janusz Pawliszyn in 1990 as an alternative to conventional sample preparation methods. its small size makes SPME being highly convenient for on-site analysis and monitoring, as well as in vivo analysis. A variety of coating fibers for extracting analytes of different polarity and volatility are nowadays commercially available. Nevertheless, the development of novel SPME fibers with improved mechanical, chemical and thermal stability is a current trend in analytical chemistry, as discussed in the text. In this work the information about novel methodological and instrumental solutions in relation to different variants solid-phase microextraction (SPME) is presented. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore particular attention was paid to the description of possible uses of novel, selective stationary phases for SPME technique. Last part presents new technical approaches in SPME field such as: Electrochemically Enhanced SPME, Membrane-SPME.
Autorzy
Informacje dodatkowe
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Język
- polski
- Rok wydania
- 2015