Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Weakly convex and convex domination numbers of some products of graphs

If $G=(V,E)$ is a simple connected graph and $a,b\in V$, then a shortest $(a-b)$ path is called a $(u-v)$-{\it geodesic}. A set $X\subseteq V$ is called {\it weakly convex} in $G$ if for every two vertices $a,b\in X$ exists $(a-b)$- geodesic whose all vertices belong to $X$. A set $X$ is {\it convex} in $G$ if for every $a,b\in X$ all vertices from every $(a-b)$-geodesic belong to $X$. The {\it weakly convex domination number} of a graph $G$ is the minimum cardinality of a weakly convex dominating set in $G$, while the {\it convex domination number} of a graph $G$ is the minimum cardinality of a convex dominating set in $G$. In this paper we consider weakly convex and convex domination numbers of Cartesian product, join and corona of some classes of graphs.

Autorzy

Informacje dodatkowe

Kategoria
Publikacja w czasopiśmie
Typ
artykuł w czasopiśmie wyróżnionym w JCR
Język
angielski
Rok wydania
2016

Źródło danych: MOSTWiedzy.pl - publikacja "Weakly convex and convex domination numbers of some products of graphs" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie