In this paper estimation algorithms derived in the sense of the least sum of absolute errors are considered for the purpose of identification of models and signals. In particular, off-line and approximate on-line estimation schemes discussed in the work are aimed at both assessing the coefficients of discrete-time stationary models and tracking the evolution of time-variant characteristics of monitored signals. What is interesting, the procedures resulting from minimization of absolute-error criteria appear to be insensitive to sporadic outliers in the processed data. With this fundamental property the deliberated absolute-error method provides correct results of identification, while the classical least-squares estimation produces outcomes, which are definitely unreliable in such circumstances. The quality of estimation and the robustness of the discussed identification procedures to occasional measurement faults are demonstrated in a few practical numerical tests.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-319-23180-8_8
- Kategoria
- Publikacja monograficzna
- Typ
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język
- angielski
- Rok wydania
- 2016
Źródło danych: MOSTWiedzy.pl - publikacja "Identification of models and signals robust to occasional outliers" link otwiera się w nowej karcie