Using the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1016/j.jmaa.2018.10.022
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuł w czasopiśmie wyróżnionym w JCR
- Język
- angielski
- Rok wydania
- 2019