The problem of scheduling n identical jobs on 4 uniform machines with speeds s1>=s2>=s3>=s4 is considered.The aim is to find a schedule with minimum possible length. We assume that jobs are subject to mutual exclusion constraints modeled by a bipartite incompatibility graph of degree delta. We show that the general problem is NP-hard even if s1=s2=s3. If, however, delta<5 and s1>12s2 s2=s3=s4, then the problem can be solved to optimality in polynomial time. The same algorithm returns a solution of value at most 2 times optimal provided that s1>2s2.
Autorzy
- Hanna Furmańczyk,
- prof. dr hab. inż. Marek Kubale link otwiera się w nowej karcie
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1515/bpasts-2017-0004
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuł w czasopiśmie wyróżnionym w JCR
- Język
- angielski
- Rok wydania
- 2017