The classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications. The chapter presents an experimental study of several methods for real motion and motion intent classification (rest/upper/lower limbs motion, and rest/left/right hand motion). First, our approach to EEG recordings segmentation and feature extraction is presented. Then, 5 classifiers (Naïve Bayes, Decision Trees, Random Forest, Nearest-Neighbors NNge, Rough Set classifier) are trained and tested using examples from an open database. Feature subsets are selected for consecutive classification experiments, reducing the number of required EEG electrodes. Methods comparison and obtained results are presented, and a study of features feeding the classifiers is provided. Differences among participating subjects and accuracies for real and imaginary motion are discussed. It is shown that though classification accuracy varies from person to person, it could exceed 80% for some classifiers.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-319-67588-6_12
- Kategoria
- Publikacja monograficzna
- Typ
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język
- angielski
- Rok wydania
- 2018