Shaking table testing is the most commonly adopted method to simulate earthquake forces. This approach allows us to analyze the dynamic performance and provides a valuable insight into the dynamics of building structures, which helps to improve their future safety and reliability. The present study aims to conduct a numerical evaluation of dynamic response of a multi-storey steel structure model, which was previously examined during an extensive shaking table investigation. The experimental model was subjected to a number of different earthquake ground motions and a mining tremor. In order to perform this numerical research, the analyzed two-storey steel structure model was considered as a 2-DOF system with lumped parameters, which were determined by conducting free vibra-tion tests. The results obtained demonstrate that not only seismic excitations but also mining tremors may considerably deteriorate structural behaviour by induct-ing strong structural vibrations. The time-acceleration history plots computed for the multi-storey structure model idealized as a 2-DOF system are consistent with those recorded during the previously conducted shaking table investigation, which confirms high accuracy in assuming lumped parameters to characterize the analyzed two-storey steel structure model.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-319-96601-4_10
- Kategoria
- Aktywność konferencyjna
- Typ
- materiały konferencyjne indeksowane w Web of Science
- Język
- angielski
- Rok wydania
- 2018