Background Among the studied antitumor acridinone derivatives developed in our laboratory, 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone (C-1305) and 5-diethylaminoethylamino-8-hydroxyimidazoacridinone (C-1311) exhibited cytotoxic and antitumor properties against several cancer types and were selected to be evaluated in preclinical and early-phase clinical trials. In the present work, we investigated the impact of C-1305 and C-1311 on UDP-glucuronosyltransferase (UGT) activity. Methods Enzyme activity modulation was studied using HPLC by analyzing standard UGT substrate metabolism in the presence and absence of antitumor drugs. The investigations were performed in two model systems: (i) under noncellular conditions, including human liver microsomes (HLM) and recombinant UGT1A1, 1A9 and 1A10 isoenzymes and (ii) in tumor cells. Results There was observed a slight impact of studied drugs on enzyme activity. Only UGT1A1 action was altered by both compounds. The modulatory effects of UGT activity in cellular systems depended on the tumor cell type. In the case of HepG2, C-1305 and C-1311 strongly induced UGT activity, particularly for C-1311, at concentrations significantly lower than the EC50. This effect contradicted irinotecan mediated UGT inhibition. HT29 colon tumor cells were less sensitive than HepG2 to enzyme modulation in the presence of the studied compounds, particularly C-1305, where enzymatic inhibition similar to that of irinotecan was observed. Conclusions The results demonstrated that UGT activity modulation should be expected in the case of antitumor therapy with C-1305 or/and C-1311. Analysis of the results indicated that these modulations would occur via cellular regulatory pathways not by direct drug-enzyme interactions.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1016/j.pharep.2017.11.011
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuł w czasopiśmie wyróżnionym w JCR
- Język
- angielski
- Rok wydania
- 2018