Abstract Tin and tin oxide have been considered as suitable materials with high theoretical capacity for lithium ion batteries. Their low cost, high safety and other technical benefits placed them as promising replacements for graphite negative electrodes. The problem to overcome with tin oxide, as well as with other metallic materials, is high volume changes during alloying/dealloying, subsequent pulverization, delamination from current collectors following continuous degradation of the anode. To solve these issues different approaches have been applied. A number of various architectures from nanostructures to core-shell, porous, anchored and encapsulated have been studied to improve cycling performance. Much attention was paid to incorporate carbonaceous materials. Here, summarized results regarding utilization of tin oxide-carbonaceous negative electrode material are presented.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/s10008-018-3942-y
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuł w czasopiśmie wyróżnionym w JCR
- Język
- angielski
- Rok wydania
- 2018