The electromyographic activity of muscles was measured using a wireless biofeedback device. The aim of the study was to examine the possibility of creating an automatic muscle tension classifier. Several measurement series were conducted and the participant performed simple physical exercises - forcing the muscle to increase its activity accordingly to the selected scale. A small wireless device was attached to the electrodes placed on the patient's body in the area of biceps muscle. The patient body position, electrode placement and performed exercises were the features that as much as possible, minimized the impact of the surrounding muscles influence. The data were recorded and an analysis was made using QT /C++ environment. The exercises were designed to enable evaluation of muscle activity according to Lovett scale. The aim of the research described in this article was to help in the assessing of the muscle strength tension to assess progress in rehabilitation. The designed feed-forward neural network allowed classification of recorded signals with 78% accuracy.
Autorzy
- Hubert Toczko link otwiera się w nowej karcie ,
- Paweł Troka link otwiera się w nowej karcie ,
- mgr inż. Piotr Przystup link otwiera się w nowej karcie ,
- dr inż. Tomasz Kocejko link otwiera się w nowej karcie ,
- inż. Paweł Krzyżanowski link otwiera się w nowej karcie ,
- dr hab. inż. Mariusz Kaczmarek link otwiera się w nowej karcie
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1109/hsi.2018.8431188
- Kategoria
- Aktywność konferencyjna
- Typ
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język
- angielski
- Rok wydania
- 2018