Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"

The purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and used as input to train the Convolutional Neural Networks. Various settings of the spectral representation are analyzed to determine adequate option for the allophone classification. Then, testing is performed on the basis of non-native speakers’ utterances. The same approach is repeated employing learning algorithm but based on feature vectors. The achieved classification results are promising as high accuracy is observed.

Autorzy

Informacje dodatkowe

Kategoria
Aktywność konferencyjna
Typ
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język
angielski
Rok wydania
2018

Źródło danych: MOSTWiedzy.pl - publikacja "Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie