BACKGROUND: Antibiotic-loaded bone cements are now widely used in medicine. They are able to locally deliver antibiotic particles and they allow treat or protect against infection. It is assumed that the bactericidal effectiveness of bioactive bone cements depend on the parameters of its production. Hence, the aim of this study was to check the effect of aeration of bone cement before mixing the components on its properties as well as its effectiveness in combating infections. METHODS: The following research was carried out: preparation of specimens of commercially available bone cement with different aeration time, assessment of the obtained structure, porosity analysis, measurement of wettability, as well as, bactericidal tests (zone of bacterial growth inhibition and optical density of the bacterial solution). RESULTS: The results show that the process of aeration of bone cement improve the open-pore structure of bone cement, its porosity and in effect enables better inhibition of bacterial growth. However, longer aeration time resulted in defects in the structure that may contribute to fatigue breaks. Future research should undertake a broader investigation of mechanical properties, determination of the released dose of antibiotic and potential optimization of the aeration process of bone cement. CONCLUSIONS: The additional step in the form of aeration during the production of bone cement enables to modify its structure and improvement of bactericidal properties, which will result in better infection treatment (in the so-called shock dose).
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.23736/s0394-3410.19.03913-4
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuł w czasopiśmie wyróżnionym w JCR
- Język
- angielski
- Rok wydania
- 2019