Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Finding small-width connected path decompositions in polynomial time

A connected path decomposition of a simple graph $G$ is a path decomposition $(X_1,\ldots,X_l)$ such that the subgraph of $G$ induced by $X_1\cup\cdots\cup X_i$ is connected for each $i\in\{1,\ldots,l\}$. The connected pathwidth of $G$ is then the minimum width over all connected path decompositions of $G$. We prove that for each fixed $k$, the connected pathwidth of any input graph can be computed in polynomial-time. This answers an open question raised by Fedor V. Fomin during the GRASTA 2017 workshop, since connected pathwidth is equivalent to the connected (monotone) node search game.

Autorzy