ABSTRACT With the rapid progress of information technologies, cars have been made increasingly intelligent. This allows cars to act as cognitive agents, i.e., to acquire knowledge and understanding of the driving habits and behavioral characteristics of drivers (i.e., driving behavioral fingerprint) through experience. Such knowledge can be then reused to facilitate the interaction between a car and its driver, and to develop better and safer car controls. In this paper, we propose a novel approach to extract the driver’s driving behavioral fingerprints based on our conceptual framework Experience-Oriented Intelligent Things (EOIT). EOIT is a learning system that has the potential to enable Internet of Cognitive Things (IoCT) where knowledge can be extracted from experience, stored, evolved, shared, and reused aiming for cognition and thus intelligent functionality of things. By catching driving data, this approach helps cars to collect the driver’s pedal and steering operations and store them as experience; eventually, it uses obtained experience for the driver’s driving behavioral fingerprint extraction. The initial experimental implementation is presented in the paper to demonstrate our idea, and the test results show that it outperforms the Deep Learning approaches (i.e., deep fully connected neural networks and recurrent neural networks/Long Short-Term Memory networks).
Autorzy
- Haoxi Zhang,
- Fei Li,
- Juan Wang,
- Yang Zhou,
- Cesar Sanin,
- prof. dr hab. inż. Edward Szczerbicki link otwiera się w nowej karcie
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1080/01969722.2019.1705547
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2020
Źródło danych: MOSTWiedzy.pl - publikacja "Experience-Based Cognition for Driving Behavioral Fingerprint Extraction" link otwiera się w nowej karcie