Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Evaluation of Facial Pulse Signals Using Deep Neural Net Models

The reliable measurement of the pulse rate using remote photoplethysmography (PPG) is very important for many medical applications. In this paper we present how deep neural networks (DNNs) models can be used in the problem of PPG signal classification and pulse rate estimation. In particular, we show that the DNN-based classification results correspond to parameters describing the PPG signals (e.g. peak energy in the frequency domain, SNR, etc.). The results show that it is possible to identify regions of a face, for which reliable PPG signals can be extracted. The accuracy obtained for the classification task and the mean absolute error achieved for the regression task proved the usefulness of the DNN models.

Autorzy

Informacje dodatkowe

DOI
Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1109/embc.2019.8857839
Kategoria
Aktywność konferencyjna
Typ
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język
angielski
Rok wydania
2019

Źródło danych: MOSTWiedzy.pl - publikacja "Evaluation of Facial Pulse Signals Using Deep Neural Net Models" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie