Parameter optimization, also referred to as design closure, is imperative in the development of modern antennas. Theoretical considerations along with rough dimension adjustment through supervised parameter sweeping can only yield initial designs that need to be further tuned to boost the antenna performance. The major challenges include handling of multi-dimensional parameter spaces while accounting for several objectives and constraints. Due to complexity of modern antenna topologies, parameter interactions are often involved, leading to multiple local optima as well as difficulties in identifying decent initial designs that can be improved using local procedures. In such cases, global search is required, which is an expensive endeavor, especially if full-wave electromagnetic (EM) analysis is employed for antenna evaluation. This paper proposes a novel technique accommodating the search space exploration using local kriging surrogates and local improvement by means of trust-region gradient search. Computational efficiency of the process is achieved by constructing the metamodels over appropriately defined affine subspaces and incorporation of coarse-mesh EM simulations at the exploratory stages of the optimization process. The resulting framework enables nearly global search capabilities at the costs comparable to conventional gradient-based local optimization. This is demonstrated using two antenna examples and comparative studies involving multiple-start local tuning.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.3390/electronics9040673
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2020