Neural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence of subgraphs and the network’s final test accuracy by analyzing a dataset of convolutional neural networks trained for image recognition. We also consider a subgraph based network distance measure and suggest opportunities for improved NAS algorithms that could benefit from our observations.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-030-61401-0_26
- Kategoria
- Publikacja monograficzna
- Typ
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język
- angielski
- Rok wydania
- 2020
Źródło danych: MOSTWiedzy.pl - publikacja "Neural Network Subgraphs Correlation with Trained Model Accuracy" link otwiera się w nowej karcie