The article contains the results of tests on a laser-processed eyelet of undercarriage drag strut to increase its fatigue strength. Laser processing concentrated on both sides around the hole of eye for connecting the undercarriage drag strut caused that the material in this area withstood more than twice the number of load cycles established for this material. In order to determine the reasons for the increase in fatigue strength, residual stresses in laser-treated LT areas and in the base metal BM located between melted paths were determined, using the nanoindentation test and Williamson Hall method. The modified Williamson Hall analysis of XRD patterns was also used to determine the dislocation density in both areas. The results indicate that high residual tensile stresses occur in melted areas and in base metal located between melted paths occur high residual compressive stresses. A large increase in hardness and elastic properties, dissolution of non-metallic inclusions, as well as large solid solution and sub-grain strengthening contributed to the high fatigue resistance of the melted areas.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/s40684-020-00296-2
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2022