Numerical optimization procedures have been widely used in the design of microwave components and systems. Most often, optimization algorithms are applied at the later stages of the design process to tune the geometry and/or material parameter values. To ensure sufficient accuracy, parameter adjustment is realized at the level of full-wave electromagnetic (EM) analysis, which creates perhaps the most important bottleneck due to the entailed computational expenses. The cost issue hinders utilization of global search procedures, whereas local routines often fail when the initial design is of insufficient quality, especially in terms of the relationships between the current and the target operating frequencies. This paper proposes a procedure for automated adaptation of the performance requirements, which aims at improving the reliability of the parameter tuning process in the challenging situations as described above. The procedure temporarily relaxes the requirements to ensure that the existing solution can be improved, and gradually tightens them when close to terminating the optimization process. The amount and the timing of specification adjustment is governed by evaluating the design quality at the current design, and the convergence status of the algorithm. The proposed framework is validated using two examples of microstrip components (a coupler and a power divider), and shown to well handle design scenarios that turn infeasible for conventional approaches, in particular, when decent starting points are unavailable.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-030-77970-2_15
- Kategoria
- Aktywność konferencyjna
- Typ
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język
- angielski
- Rok wydania
- 2021