In dentistry, microscopes have become indispensable optical devices for high-quality treatment and micro-invasive surgery, especially in the field of endodontics. Recent machine vision advances enable more advanced, real-time applications including but not limited to dental video deblurring and workflow analysis through relevant metadata obtained by instrument motion trajectories. To this end, the proposed work addresses dental video deblurring and instrument segmentation in a Multi-task Learning fashion, leveraging spatio-temporal adaptive kernels via a recurrent design. The task-specific branches of our architecture employ the responses of those kernels to recover sharper video frames and yield the dental instrument segmentation mask. We demonstrate that the proposed method improves deblurring while retaining segmentation performance under a low computational footprint.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1109/hsi52170.2021.9538656
- Kategoria
- Aktywność konferencyjna
- Typ
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język
- angielski
- Rok wydania
- 2021