One of the possible applications of ionic liquids is to produce electricity from heat. The iron oxide nanoparticle is a potent electrical particle, which is expected to improve the heat’s efficiency to electricity conversion, however, it is prone to aggregation and sedimentation, which hamper its application. One of the methods to enhance the nanoparticle’s solubility and electrical properties is the use of a stabilizing component in the production and application process. In this research, we studied, how the nanoparticle affects the properties of the 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM TFSI) ionic liquid. The citric acid was used as a nanoparticle stabilizing agent and led to decrease of the diffusion coefficient of the ionic liquid’s components. Our results indicated, that with the addition of the citric acid, strong solvation sphere around nanoparticle was formed. The presence of nanoparticles significantly reduced the diffusion of ionic liquid components. Finally, the citric acid was found to be the strongest nanoparticle binding component of the studied system, and therefore it was able to stabilize the nanoparticle in solution.
Autorzy
- dr Adam Sieradzan,
- Dr hab. Cezary Czaplewski,
- Aleksandra Bielicka-Gieldon,
- dr hab. Maciej Bobrowski link otwiera się w nowej karcie ,
- Artur Gieldon
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1016/j.molliq.2021.117198
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2021