Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Robustness in Compressed Neural Networks for Object Detection

Model compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving setting, which is considered in this work. It was shown in the paper that the sensitivity of compressed models to different distortion types is nuanced, and some of the corruptions are heavily impacted by the compression methods (i.e., additive noise), while others (blur effect) are only slightly affected. A common way to improve the robustness of models is to use data augmentation, which was confirmed to positively affect models' robustness, also for highly compressed models. It was further shown that while data imbalance methods brought only a slight increase in accuracy for the baseline model (without compression), the impact was more striking at higher compression rates for the structured pruning. Finally, methods for handling data imbalance brought a significant improvement of the pruned models' worst-detected class accuracy.

Autorzy

Informacje dodatkowe

DOI
Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1109/ijcnn52387.2021.9533773
Kategoria
Aktywność konferencyjna
Typ
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język
angielski
Rok wydania
2021

Źródło danych: MOSTWiedzy.pl - publikacja "Robustness in Compressed Neural Networks for Object Detection" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie