Rozpoznawanie gatunku muzycznego jest jednym z podstawowych elementów inteligentnych systemów tworzenia automatycznych list muzyki. Platformy strumieniowe oferujące taką usługę wymagają rozwiązań, które umożliwią jak najdokładniej określić przynależność utworu do gatunku muzycznego. Zgodnie z aktualnym stanem wiedzy – najskuteczniejszym klasyfikatorem są sztuczne sieci neuronowe (w tym w wersji uczenia głębokiego), dla których wejście może stanowić spektrogram (postać 2D wektora wejściowego), współczynniki MFCC czy wektor parametrów. We wcześniejszych pracach autorzy opisali opracowaną przez siebie sztuczną sieć neuronową, która z 5-procentowym błędem pozwoliła wyznaczyć zestaw deskryptorów standardu MPEG-7. Mogą one zostać wykorzystane między innymi jako dane wejściowe do klasyfikatora gatunku muzycznego. W rozdziale zaprezentowano porównanie skuteczności klasyfikatora wykorzystującego architekturę głęboką w zależności od typu danych wejściowych, takich jak: sygnał w postaci czasowej, spektrogram, MFCC, wektor parametrów oraz deskryptory niskopoziomowe standardu MPEG-7 zarówno występujące w bazie danych, jak i te obliczone z wykorzystaniem sieci neuronowej.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.37190/ido2021
- Kategoria
- Publikacja monograficzna
- Typ
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
- Język
- polski
- Rok wydania
- 2021