The genome feature of SARS-CoV-2 leads the virus to mutate and creates new variants of concern. Tackling viral mutations is also an important challenge for the development of a new vaccine. Accordingly, in the present study, we undertook to identify B- and T-cell epitopes with immunogenic potential for eliciting responses to SARS-CoV-2, using computational approaches and its tailoring to coronavirus variants. A total of 47 novel epitopes were identified as immunogenic triggering immune responses and no toxic after investigation with in silico tools. Furthermore, we found these peptide vaccine candidates showed a significant binding affinity for MHC I and MHC II alleles in molecular docking investigations. We consider them to be promising targets for developing peptide-based vaccines against SARS-CoV-2. Subsequently, we designed two efficient multi-epitopes vaccines against the SARS-CoV-2, the first one based on potent MHC class I and class II T-cell epitopes of S (FPNITNLCPF–NYNYLYRLFR–MFVFLVLLPLVSSQC), M (MWLSYFIASF–GLMWLSYFIASFRLF), E (LTALRLCAY–LLFLAFVVFLLVTLA), and N (SPRWYFYYL–AQFAPSASAFFGMSR). The second candidate is the result of the tailoring of the first designed vaccine according to three classes of SARS-CoV-2 variants. Molecular docking showed that the protein-protein binding interactions between the vaccines construct and TLR2–TLR4 immune receptors are stable complexes. These findings confirmed that the final multi-epitope vaccine could be easily adapted to new viral variants. Our study offers a shortlist of promising epitopes that can accelerate the development of an effective and safe vaccine against the virus and its adaptation to new variants.
Autorzy
- Wahiba Ezzemani,
- Anass Kettani,
- dr Subrahmanyam Sappati link otwiera się w nowej karcie ,
- Kavya Kondaka link otwiera się w nowej karcie ,
- Hicham El Ossmani,
- Kyoko Tsukiyama-Kohara,
- Haya Altawalah,
- Rachid Saile,
- Michinori Kohara,
- Soumaya Benjelloun,
- Sayeh Ezzikouri
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1080/07391102.2022.2075468
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2023