Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Global Surrogate Modeling by Neural Network-Based Model Uncertainty

This work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically on the one-dimensional Forrester function and the two-dimensional Branin function. The results demonstrate that global surrogate modeling using neural network-based function prediction can be guided efficiently and adaptively using a neural network approximation of the model uncertainty.

Autorzy

Informacje dodatkowe

DOI
Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-031-08757-8_35
Kategoria
Aktywność konferencyjna
Typ
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język
angielski
Rok wydania
2022

Źródło danych: MOSTWiedzy.pl - publikacja "Global Surrogate Modeling by Neural Network-Based Model Uncertainty" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie