Civil engineering structures may seriously suffer from different damage states re-sult of earthquakes. Nowadays, retrofitting the existing buildings is a serious need among designers. Two important factors of required performance level and cost of retrofitting play a crucial role in the retrofitting approach. In this study, a new optimal computational strategy to retrofit structures by implementing linear Viscous Dampers (VDs) is investigated to achieve a higher performance level with lower implementation cost. Regarding this goal, a Tcl programming code was developed with the capability of considering damaged structure due to earth-quake-induced structural pounding. The code allows us to improve structural models to take into account the real condition of buildings using both MATLAB and Opensees software simultaneously. To present the capability of this strategy, the 3-, and 6-story colliding Steel Moment-Resisting Frames (SMRFs) were se-lected. Incremental Dynamic Analysis (IDA) was performed based on the inter-story drift ratio of floor levels as engineering demand parameter, and Sa(T1) as in-tensity measure. Interstory median IDAs of floor levels of colliding SMRFs were plotted to find out the floor level prone to damage and to retrofit only this floor level instead of all stories. The results show that implementing only two linear VDs with a cost of two units can achieve a higher life safety performance level in the case of 3-, and 6-story SMRFs. Moreover, the proposed computational strat-egy can be used for any structure (with and without pounding conditions), and in all performance levels prescribed in FEMA 356 code.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-031-08754-7_25
- Kategoria
- Aktywność konferencyjna
- Typ
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język
- angielski
- Rok wydania
- 2022