Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings

The paper proposes an approach for extending deep neural networks-based solutions to closed-set speaker identification toward the open-set problem. The idea is built on the characteristics of deep neural networks trained for the classification tasks, where there is a layer consisting of a set of deep features extracted from the analyzed inputs. By extracting this vector and performing anomaly detection against the set of known speakers, new speakers can be detected and modeled for further re-identification. The approach is tested on the basis of NeMo toolkit with SpeakerNet architecture. The algorithm is shown to be working with multiple new speakers introduced.

Autorzy

Informacje dodatkowe

DOI
Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-031-16159-9_14
Kategoria
Publikacja monograficzna
Typ
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Język
angielski
Rok wydania
2022

Źródło danych: MOSTWiedzy.pl - publikacja "Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie