Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Optimally regularized local basis function approach to identification of time-varying systems

Accurate identification of stochastic systems with fast-varying parameters is a challenging task which cannot be accomplished using model-free estimation methods, such as weighted least squares, which assume only that system coefficients can be regarded as locally constant. The current state of the art solutions are based on the assumption that system parameters can be locally approximated by a linear combination of appropriately chosen basis functions. The paper shows that when the internal correlation structure of estimated parameters is known, the tracking performance of the local basis function estimation algorithms can be further improved by means of regularization. The optimal form of the regularization matrix is derived analytically and it is shown that the best settings of the regularized algorithm can be determined in the computationally efficient way using cross-validation.

Autorzy

Informacje dodatkowe

DOI
Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1109/cdc51059.2022.9992328
Kategoria
Aktywność konferencyjna
Typ
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język
angielski
Rok wydania
2022

Źródło danych: MOSTWiedzy.pl - publikacja "Optimally regularized local basis function approach to identification of time-varying systems" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie