The stability related issues may occur in a power system due to disturbances in generating or loading conditions, especially in the presence of distributed generation (DG) based on renewable energy resources (RERs). This paper proposes a novel strategy for the stability enhancement of a wind power generation system (WPGS) by using a combination of three devices, namely, a power system stabilizer (PSS), resistive superconductor fault current limiter (R-SFCL) and static synchronous compensator (STATCOM). The small signal (SS) stability of the test system is enhanced by selecting the best PSS type from the different types of PSS. An R-SFCL is used for improving the rotor angle and the frequency stability of the test system. Two indices, namely, transient stability index and sum of maximum deviations (SMD) index are introduced for determining the optimal locations of different sized R-SFCLs for increasing the rotor angle stability. The sensitivity index (SI) based on the power change between areas is applied for determining the optimal locations of different sized R-SFCLs for enhancing the frequency stability. Along with rotor angle and frequency stability, LVRT capability improvement of the wind farm using STATCOM is also considered. Finally, the combined effect of R-SFCL and STATCOM on the rotor angle and the frequency stability, for different fault locations, is also investigated for determining the optimal location of an R-SFCL in the presence of STATCOM. The results presented in the paper show that STATCOM affects both the number of feasible locations and the optimal locations that can be selected for different sized R-SFCLs for augmenting the rotor angle and the frequency stability of the system during faults. Moreover, it is pointed out that an optimal combination between the different sizes and the locations of R-SFCLs and STATCOM exists to enhance the overall stability of the test system under fault conditions.
Autorzy
- Muhammad Sarwar,
- Muhammad Arshed,
- Babar Hussain,
- Muhammad Rasheed,
- Hanan Tariq link otwiera się w nowej karcie ,
- prof. dr hab. inż. Stanisław Czapp link otwiera się w nowej karcie ,
- Sarmad Tariq,
- Intisar Ali Sajjad
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1109/access.2023.3262172
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2023