Controlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched to groups of various MII oocyte counts using ranking, correspondence analysis, and self-organizing map methods. The gradient boosting machine technique was used to train models on a clinical dataset of 8,574 or a clinical-genetic dataset of 516 ovarian stimulations. The clinical-genetic model predicted the number of MII oocytes better than that based on clinical data. Anti-Müllerian hormone level and antral follicle count were the two most important predictors while a genetic feature consisting of sequence variants in the GDF9, LHCGR, FSHB, ESR1, and ESR2 genes was the third. The combined contribution of genetic features important for the prediction was over one-third of that revealed for anti-Müllerian hormone. Predictions of our clinical-genetic model accurately matched individuals’ actual outcomes preventing over- or underestimation. The genetic data upgrades the personalized prediction of ovarian stimulation outcomes, thus improving the in vitro fertilization procedure.
Autorzy
- mgr Krystian Zieliński link otwiera się w nowej karcie ,
- dr Sebastian Pukszta,
- dr Małgorzata Mickiewicz,
- mgr Marta Kotlarz,
- dr Piotr Wygocki,
- mgr Marcin Zieleń,
- mgr Dominika Drzewiecka,
- dr Damian Drzyzga,
- dr Anna Kloska,
- dr hab. Joanna Jakóbkiewicz-Banecka
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1371/journal.pcbi.1011020
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2023