In this work, we introduce a framework for cross-lingual speech synthesis, which involves an upstream Voice Conversion (VC) model and a downstream Text-To-Speech (TTS) model. The proposed framework consists of 4 stages. In the first two stages, we use a VC model to convert utterances in the target locale to the voice of the target speaker. In the third stage, the converted data is combined with the linguistic features and durations from recordings in the target language, which are then used to train a single-speaker acoustic model. Finally, the last stage entails the training of a locale-independent vocoder. Our evaluations show that the proposed paradigm outperforms state-of-the-art approaches which are based on training a large multilingual TTS model. In addition, our experiments demonstrate the robustness of our approach with different model architectures, languages, speakers and amounts of data. Moreover, our solution is especially beneficial in low-resource settings.
Autorzy
- Dariusz Piotrowski,
- Renard Korzeniowski,
- Alessio Falai,
- dr inż. Sebastian Cygert link otwiera się w nowej karcie ,
- Kamil Pokora,
- Georgi Tinchev,
- Ziyao Zhang,
- Kayoko Yanagisawa
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-981-99-8126-7_20
- Kategoria
- Aktywność konferencyjna
- Typ
- materiały konferencyjne indeksowane w Web of Science
- Język
- angielski
- Rok wydania
- 2023